Volatile sulfur compounds (VSCs) greatly influence the sensory properties and quality of wine and arise via both biological and chemical mechanisms. VSCs formed can also act as precursors for further downstream VSCs, thus elucidating the pathways leading to their formation is paramount. Short-term additions of exogenous hydrogen sulfide (H2S), ethanethiol (EtSH), S-ethylthio acetate (ETA), methanethiol (MeSH) and S-methylthio acetate (MTA) were made to exponentially growing fermentations of synthetic grape medium. The VSC profiles produced from live yeast cells were compared with those from dead cells and no cells. Interestingly, this experiment allowed the identification of specific biochemical and/or chemical pathways; e.g. most of the conversion of H2S to EtSH, and the further step from EtSH to ETA, required the presence of live yeast cells, as did the conversion of MeSH to MTA. In contrast, the reaction from MTA to MeSH and ETA to EtSH was due primarily to chemical degradation. Ultimately, this research unravelled some of the complex interactions and interconversions between VSCs, pinpointing the key biochemical and chemical nodes. These pathways are highly interconnected and showcase the complexity of both the sulfur pathways in yeast and the reactive chemistry of sulfur-containing compounds.

Addition of volatile sulfur compounds to yeast at the early stages of fermentation reveals distinct biological and chemical pathways for aroma formation

Slaghenaufi, Davide;
2020-01-01

Abstract

Volatile sulfur compounds (VSCs) greatly influence the sensory properties and quality of wine and arise via both biological and chemical mechanisms. VSCs formed can also act as precursors for further downstream VSCs, thus elucidating the pathways leading to their formation is paramount. Short-term additions of exogenous hydrogen sulfide (H2S), ethanethiol (EtSH), S-ethylthio acetate (ETA), methanethiol (MeSH) and S-methylthio acetate (MTA) were made to exponentially growing fermentations of synthetic grape medium. The VSC profiles produced from live yeast cells were compared with those from dead cells and no cells. Interestingly, this experiment allowed the identification of specific biochemical and/or chemical pathways; e.g. most of the conversion of H2S to EtSH, and the further step from EtSH to ETA, required the presence of live yeast cells, as did the conversion of MeSH to MTA. In contrast, the reaction from MTA to MeSH and ETA to EtSH was due primarily to chemical degradation. Ultimately, this research unravelled some of the complex interactions and interconversions between VSCs, pinpointing the key biochemical and chemical nodes. These pathways are highly interconnected and showcase the complexity of both the sulfur pathways in yeast and the reactive chemistry of sulfur-containing compounds.
2020
Fermentation
Saccharomyces cerevisiae
Volatile sulfur compounds
Wine
Acetates
Hydrogen Sulfide
Odorants
Saccharomyces cerevisiae
Sulfhydryl Compounds
Sulfur Compounds
Vitis
Volatile Organic Compounds
Wine
Fermentation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1049929
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact