The current study compared the effects of concentric-based (CONC), eccentric-based (ECC), and traditional concentric-eccentric (TRAD) resistance training on muscle strength, mass, and architecture and the postdetraining retention of the training-induced effects in women. Sixty women were randomly assigned to unilateral volume-equated CONC, ECC, or TRAD knee extension training or control (N = 15 per group). Before training, after an 8-week intervention period, and after an 8-week detraining period, isokinetic concentric, eccentric, and isometric torque were measured. In addition, thigh lean mass was assessed by dual X-ray absorptiometry and vastus lateralis thickness, pennation angle, and fascicle length by ultrasound. After training, concentric and isometric torque increased (p < 0.05) similarly in all groups, whereas eccentric torque increased more in ECC than that in CONC (+13.1%, effect size (ES): 0.71 [0.04-1.38]) and TRAD (+12.6%, ES: 0.60 [0.12-1.08]). Thigh lean mass increased in ECC (+6.1%, ES: 0.47 [0.27-0.67]) and TRAD (+3.1%, ES: 0.33 [0.01-0.65]). Vastus lateralis thickness and pennation angle increased (p < 0.05) similarly in all groups, whereas fascicle elongation was visible in ECC (+9.7%, ES: 0.92 [0.14-1.65]) and TRAD (+7.1%, ES: 0.64 [0.03-1.25]). After detraining, all groups retained (p < 0.05) similar concentric torque. ECC and TRAD preserved eccentric torque (p < 0.05), but ECC more than TRAD (+17.9%, ES: 0.61 [0.21-1.21]). All groups preserved isometric torque (p < 0.05), but ECC more than CONC (+14.2%, ES: 0.71 [0.04-1.38]) and TRAD (+13.8%, ES: 0.65 [0.10-1.20]). Thigh lean mass and vastus lateralis fascicle length were retained only in ECC (p < 0.05), pennation angle was preserved in all groups (p < 0.05), and thickness was retained in CONC and ECC (p < 0.05). Including the eccentric phase in resistance training is essential to preserve adaptations after detraining.
Including the eccentric phase in resistance training to counteract the effects of detraining in women: a randomized controlled trial
Bertinato, Luciano;Milanese, Chiara;Venturelli, Massimo;Schena, Federico
2022-01-01
Abstract
The current study compared the effects of concentric-based (CONC), eccentric-based (ECC), and traditional concentric-eccentric (TRAD) resistance training on muscle strength, mass, and architecture and the postdetraining retention of the training-induced effects in women. Sixty women were randomly assigned to unilateral volume-equated CONC, ECC, or TRAD knee extension training or control (N = 15 per group). Before training, after an 8-week intervention period, and after an 8-week detraining period, isokinetic concentric, eccentric, and isometric torque were measured. In addition, thigh lean mass was assessed by dual X-ray absorptiometry and vastus lateralis thickness, pennation angle, and fascicle length by ultrasound. After training, concentric and isometric torque increased (p < 0.05) similarly in all groups, whereas eccentric torque increased more in ECC than that in CONC (+13.1%, effect size (ES): 0.71 [0.04-1.38]) and TRAD (+12.6%, ES: 0.60 [0.12-1.08]). Thigh lean mass increased in ECC (+6.1%, ES: 0.47 [0.27-0.67]) and TRAD (+3.1%, ES: 0.33 [0.01-0.65]). Vastus lateralis thickness and pennation angle increased (p < 0.05) similarly in all groups, whereas fascicle elongation was visible in ECC (+9.7%, ES: 0.92 [0.14-1.65]) and TRAD (+7.1%, ES: 0.64 [0.03-1.25]). After detraining, all groups retained (p < 0.05) similar concentric torque. ECC and TRAD preserved eccentric torque (p < 0.05), but ECC more than TRAD (+17.9%, ES: 0.61 [0.21-1.21]). All groups preserved isometric torque (p < 0.05), but ECC more than CONC (+14.2%, ES: 0.71 [0.04-1.38]) and TRAD (+13.8%, ES: 0.65 [0.10-1.20]). Thigh lean mass and vastus lateralis fascicle length were retained only in ECC (p < 0.05), pennation angle was preserved in all groups (p < 0.05), and thickness was retained in CONC and ECC (p < 0.05). Including the eccentric phase in resistance training is essential to preserve adaptations after detraining.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.