Background: High plasma levels of activated Factor VII-Antithrombin complex (FVIIa-AT) have been associated with an increased risk of cardiovascular mortality in patients with stable coronary artery disease (CAD). Objectives: To investigate if FVIIa-AT levels are associated with activated factor X generation (FXaG) in modified assays. Patients/methods: Forty CAD patients were characterized for FVIIa-AT levels by ELISA and for FXaG in plasma. Novel fluorogenic FXaG assays, based on aptamers inhibiting thrombin and/or tissue factor pathway inhibitor (TFPI), were set up. Results: FXaG correlated with FVIIa-AT levels (RAUC = 0.393, P = 0.012). The combination of thrombin inhibition and FXaG potentiation by using anti-thrombin and anti-TFPI aptamers, respectively, favors the study of time parameters. The progressive decrease in lag time from the lowest to the highest FVIIa-AT quartile was magnified by combining TFPI and thrombin inhibitory aptamers, thus supporting increased FXaG activity in the coagulation initiation phase. By exploring FXaG rates across FVIIa-AT quartiles, the largest relative differences were detectable at the early times (the highest versus the lowest quartile; 5.0-fold, P = 0.005 at 45 s; 3.5-fold, P = 0.001 at 55 s), and progressively decreased over time (2.3-fold, P = 0.002 at 75 s; 1.8-fold, P = 0.008 at 95 s; 1.6-fold, P = 0.022 at 115 s). Association between high FVIIa-AT levels and increased FXaG was independent of F7 -323 A1/A2 polymorphism influencing FVIIa-AT levels. Conclusions: High FVIIa-AT plasma levels were associated with increased FXaG. Hypercoagulability features were specifically detectable in the coagulation initiation phase, which may have implications for cardiovascular risk prediction by either FVIIa-AT complex measurement or modified FXaG assays.
Aptamer-modified FXa generation assays to investigate hypercoagulability in plasma from patients with ischemic heart disease
Martinelli, Nicola;Castagna, Annalisa;Stefanoni, Filippo;Olivieri, Oliviero;
2020-01-01
Abstract
Background: High plasma levels of activated Factor VII-Antithrombin complex (FVIIa-AT) have been associated with an increased risk of cardiovascular mortality in patients with stable coronary artery disease (CAD). Objectives: To investigate if FVIIa-AT levels are associated with activated factor X generation (FXaG) in modified assays. Patients/methods: Forty CAD patients were characterized for FVIIa-AT levels by ELISA and for FXaG in plasma. Novel fluorogenic FXaG assays, based on aptamers inhibiting thrombin and/or tissue factor pathway inhibitor (TFPI), were set up. Results: FXaG correlated with FVIIa-AT levels (RAUC = 0.393, P = 0.012). The combination of thrombin inhibition and FXaG potentiation by using anti-thrombin and anti-TFPI aptamers, respectively, favors the study of time parameters. The progressive decrease in lag time from the lowest to the highest FVIIa-AT quartile was magnified by combining TFPI and thrombin inhibitory aptamers, thus supporting increased FXaG activity in the coagulation initiation phase. By exploring FXaG rates across FVIIa-AT quartiles, the largest relative differences were detectable at the early times (the highest versus the lowest quartile; 5.0-fold, P = 0.005 at 45 s; 3.5-fold, P = 0.001 at 55 s), and progressively decreased over time (2.3-fold, P = 0.002 at 75 s; 1.8-fold, P = 0.008 at 95 s; 1.6-fold, P = 0.022 at 115 s). Association between high FVIIa-AT levels and increased FXaG was independent of F7 -323 A1/A2 polymorphism influencing FVIIa-AT levels. Conclusions: High FVIIa-AT plasma levels were associated with increased FXaG. Hypercoagulability features were specifically detectable in the coagulation initiation phase, which may have implications for cardiovascular risk prediction by either FVIIa-AT complex measurement or modified FXaG assays.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.