We develop a method to give an estimate on the number of functionally independent constants of motion of a nonholonomic system with symmetry which have the so called 'weakly Noetherian' property [22]. We show that this number is bounded from above by the corank of the involutive closure of a certain distribution on the constraint manifold. The effectiveness of the method is illustrated on several examples.
On the number of weakly Noetherian constants of motion of nonholonomic systems
Sansonetto, Nicola
2009-01-01
Abstract
We develop a method to give an estimate on the number of functionally independent constants of motion of a nonholonomic system with symmetry which have the so called 'weakly Noetherian' property [22]. We show that this number is bounded from above by the corank of the involutive closure of a certain distribution on the constraint manifold. The effectiveness of the method is illustrated on several examples.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
PP-polare-revised.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
370.56 kB
Formato
Adobe PDF
|
370.56 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.