We study the existence of first integrals in nonholonomic systems with symmetry. First we define the concept of M -cotangent lift of a vector field on a manifold Q in order to unify the works [Balseiro P., Arch. Ration. Mech. Anal. 214 (2014), 453-501, arXiv:1301.1091], [Fosse F., Ramos A., Sansonetto N., Regul. Chaotic Dyn. 12 (2007), 579588], and [Fosse F., Giacobbe A., Sansonetto N., Rep. Math. Phys. 62 (2008), 345-367]. Second, we study gauge symmetries and gauge momenta, in the cases in which there are the symmetries that satisfy the so-called vertical symmetry condition. Under such condition we can predict the number of linearly independent first integrals (that are gauge momenta). We illustrate the theory with two examples.

A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries

Sansonetto, Nicola
2016-01-01

Abstract

We study the existence of first integrals in nonholonomic systems with symmetry. First we define the concept of M -cotangent lift of a vector field on a manifold Q in order to unify the works [Balseiro P., Arch. Ration. Mech. Anal. 214 (2014), 453-501, arXiv:1301.1091], [Fosse F., Ramos A., Sansonetto N., Regul. Chaotic Dyn. 12 (2007), 579588], and [Fosse F., Giacobbe A., Sansonetto N., Rep. Math. Phys. 62 (2008), 345-367]. Second, we study gauge symmetries and gauge momenta, in the cases in which there are the symmetries that satisfy the so-called vertical symmetry condition. Under such condition we can predict the number of linearly independent first integrals (that are gauge momenta). We illustrate the theory with two examples.
2016
nonholonomic systems; Lie group symmetries; first integrals; gauge symmetries; and gauge momenta
File in questo prodotto:
File Dimensione Formato  
A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 463.94 kB
Formato Adobe PDF
463.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1009286
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact