We study the existence of first integrals in nonholonomic systems with symmetry. First we define the concept of M -cotangent lift of a vector field on a manifold Q in order to unify the works [Balseiro P., Arch. Ration. Mech. Anal. 214 (2014), 453-501, arXiv:1301.1091], [Fosse F., Ramos A., Sansonetto N., Regul. Chaotic Dyn. 12 (2007), 579588], and [Fosse F., Giacobbe A., Sansonetto N., Rep. Math. Phys. 62 (2008), 345-367]. Second, we study gauge symmetries and gauge momenta, in the cases in which there are the symmetries that satisfy the so-called vertical symmetry condition. Under such condition we can predict the number of linearly independent first integrals (that are gauge momenta). We illustrate the theory with two examples.
A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries
Sansonetto, Nicola
2016-01-01
Abstract
We study the existence of first integrals in nonholonomic systems with symmetry. First we define the concept of M -cotangent lift of a vector field on a manifold Q in order to unify the works [Balseiro P., Arch. Ration. Mech. Anal. 214 (2014), 453-501, arXiv:1301.1091], [Fosse F., Ramos A., Sansonetto N., Regul. Chaotic Dyn. 12 (2007), 579588], and [Fosse F., Giacobbe A., Sansonetto N., Rep. Math. Phys. 62 (2008), 345-367]. Second, we study gauge symmetries and gauge momenta, in the cases in which there are the symmetries that satisfy the so-called vertical symmetry condition. Under such condition we can predict the number of linearly independent first integrals (that are gauge momenta). We illustrate the theory with two examples.File | Dimensione | Formato | |
---|---|---|---|
A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries.pdf
accesso aperto
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
463.94 kB
Formato
Adobe PDF
|
463.94 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.