The ability to measure mechanical response of cells under applied load is essential for developing more accurate models of cell mechanics and mechanotransduction. Living cells have been mechanically investigated by several approaches. Among them, atomic force microscopy (AFM) is widely used thanks to its high versatility and sensitivity. In the case of large cells or 3D multicellular aggregates, standard AFM probes may not be appropriate to investigate the mechanical properties of the whole biological system. Owing to their size, standard AFM probes can compress only a single somatic cell or part of it. To fill this gap, we have designed and fabricated planar AFM macro-probes compatible with commercial AFM instruments. The probes are constituted of a large flat compression plate, connected to the chip by two flexible arms, whose mechanical characteristics are tuned for specific biological applications. As proof of concept, we have used the macro-probes to measure the viscoelasticity of large spherical biological systems, which have a diameter above 100 μm: human oocytes and 3D cell spheroids. Compression experiments are combined with visual inspection, using a side-view configuration imaging, which allows us to monitor the sample morphology during the compression and to correlate it with the viscoelastic parameters. Our measurements provide a quantitative estimate of the relaxation times of such biological systems, which are discussed in relation to data present in literature. The broad applicability of the AFM macro-probes can be relevant to study the biomechanical features in any biological process involving large soft materials.

Planar AFM macro-probes to study the biomechanical properties of large cells and 3D cell spheroids

Roberto Chignola;
2019-01-01

Abstract

The ability to measure mechanical response of cells under applied load is essential for developing more accurate models of cell mechanics and mechanotransduction. Living cells have been mechanically investigated by several approaches. Among them, atomic force microscopy (AFM) is widely used thanks to its high versatility and sensitivity. In the case of large cells or 3D multicellular aggregates, standard AFM probes may not be appropriate to investigate the mechanical properties of the whole biological system. Owing to their size, standard AFM probes can compress only a single somatic cell or part of it. To fill this gap, we have designed and fabricated planar AFM macro-probes compatible with commercial AFM instruments. The probes are constituted of a large flat compression plate, connected to the chip by two flexible arms, whose mechanical characteristics are tuned for specific biological applications. As proof of concept, we have used the macro-probes to measure the viscoelasticity of large spherical biological systems, which have a diameter above 100 μm: human oocytes and 3D cell spheroids. Compression experiments are combined with visual inspection, using a side-view configuration imaging, which allows us to monitor the sample morphology during the compression and to correlate it with the viscoelastic parameters. Our measurements provide a quantitative estimate of the relaxation times of such biological systems, which are discussed in relation to data present in literature. The broad applicability of the AFM macro-probes can be relevant to study the biomechanical features in any biological process involving large soft materials.
2019
oocyte
Atomic Force Microscopy
biomechanics
AFM-probes
tumor spheroid
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/996100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 29
social impact