Marine diatoms are prominent phytoplankton organisms that perform photosynthesis in extremely variable environments. Diatoms possess a strong ability to dissipate excess absorbed energy as heat via nonphotochemical quenching (NPQ). This process relies on changes in carotenoid pigment composition (xanthophyll cycle) and on specific members of the light-harvesting complex family specialized in photoprotection (LHCXs), which potentially act as NPQ effectors. However, the link between light stress, NPQ, and the existence of different LHCX isoforms is not understood in these organisms. Using picosecond fluorescence analysis, we observed two types of NPQ in the pennate diatom Phaeodactylum tricornutum that were dependent on light conditions. Short exposure of low-light-acclimated cells to high light triggers the onset of energy quenching close to the core of photosystem II, while prolonged light stress activates NPQ in the antenna. Biochemical analysis indicated a link between the changes in the NPQ site/mechanism and the induction of different LHCX isoforms, which accumulate either in the antenna complexes or in the core complex. By comparing the responses of wild-type cells and transgenic lines with a reduced expression of the major LHCX isoform, LHCX1, we conclude that core complex-associated NPQ is more effective in photoprotection than is the antenna complex. Overall, our data clarify the complex molecular scenario of light responses in diatoms and provide a rationale for the existence of a degenerate family of LHCX proteins in these algae.

Dynamic Changes between Two LHCX-Related Energy Quenching Sites Control Diatom Photoacclimation

Stella, Giulio Rocco;Bassi, Roberto;
2018-01-01

Abstract

Marine diatoms are prominent phytoplankton organisms that perform photosynthesis in extremely variable environments. Diatoms possess a strong ability to dissipate excess absorbed energy as heat via nonphotochemical quenching (NPQ). This process relies on changes in carotenoid pigment composition (xanthophyll cycle) and on specific members of the light-harvesting complex family specialized in photoprotection (LHCXs), which potentially act as NPQ effectors. However, the link between light stress, NPQ, and the existence of different LHCX isoforms is not understood in these organisms. Using picosecond fluorescence analysis, we observed two types of NPQ in the pennate diatom Phaeodactylum tricornutum that were dependent on light conditions. Short exposure of low-light-acclimated cells to high light triggers the onset of energy quenching close to the core of photosystem II, while prolonged light stress activates NPQ in the antenna. Biochemical analysis indicated a link between the changes in the NPQ site/mechanism and the induction of different LHCX isoforms, which accumulate either in the antenna complexes or in the core complex. By comparing the responses of wild-type cells and transgenic lines with a reduced expression of the major LHCX isoform, LHCX1, we conclude that core complex-associated NPQ is more effective in photoprotection than is the antenna complex. Overall, our data clarify the complex molecular scenario of light responses in diatoms and provide a rationale for the existence of a degenerate family of LHCX proteins in these algae.
2018
algae, diatoms, photosynthesis
File in questo prodotto:
File Dimensione Formato  
Taddei et al 2018 diatom proofs.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/992687
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 41
social impact