LHC (light-harvesting complex) proteins of plants and algae are known to be involved both in collecting light energy for driving the primary photochemical reactions of photosynthesis and in photoprotection when the absorbed light energy exceeds the capacity of the photosynthetic apparatus. These proteins usually contain three transmembrane (TM) helices which span the thylakoid membranes and bind several chlorophyll, carotenoid and lipid molecules. In addition, the LHC protein family includes LHC-like proteins containing one, two, three or even four TM domains. One-helix proteins are not only present in eukaryotic photosynthetic organisms but also in cyanobacteria where they have been named high light-inducible proteins. These small proteins are probably the ancestors of the members of the extant LHC protein family which arouse through gene duplications, deletions and fusions. During evolution, some of these proteins have diverged and acquired novel functions. In most cases, LHC-like proteins are induced in response to various stress conditions including high light, high salinity, elevated temperature and nutrient limitation. Many of these proteins play key roles in photoprotection, notably in non-photochemical quenching of absorbed light energy. Moreover, some of these proteins appear to be involved in the regulation of chlorophyll synthesis and in the assembly and repair of Photosystem II and also of Photosystem I possibly by mediating the insertion of newly synthesized pigments into the photosynthetic reaction centers.

LHC-like proteins involved in stress responses and biogenesis/repair of the photosynthetic apparatus

Bassi, Roberto
2019-01-01

Abstract

LHC (light-harvesting complex) proteins of plants and algae are known to be involved both in collecting light energy for driving the primary photochemical reactions of photosynthesis and in photoprotection when the absorbed light energy exceeds the capacity of the photosynthetic apparatus. These proteins usually contain three transmembrane (TM) helices which span the thylakoid membranes and bind several chlorophyll, carotenoid and lipid molecules. In addition, the LHC protein family includes LHC-like proteins containing one, two, three or even four TM domains. One-helix proteins are not only present in eukaryotic photosynthetic organisms but also in cyanobacteria where they have been named high light-inducible proteins. These small proteins are probably the ancestors of the members of the extant LHC protein family which arouse through gene duplications, deletions and fusions. During evolution, some of these proteins have diverged and acquired novel functions. In most cases, LHC-like proteins are induced in response to various stress conditions including high light, high salinity, elevated temperature and nutrient limitation. Many of these proteins play key roles in photoprotection, notably in non-photochemical quenching of absorbed light energy. Moreover, some of these proteins appear to be involved in the regulation of chlorophyll synthesis and in the assembly and repair of Photosystem II and also of Photosystem I possibly by mediating the insertion of newly synthesized pigments into the photosynthetic reaction centers.
2019
LHC-like protein; non-photochemical quenching; oxidative stress; photosynthesis
File in questo prodotto:
File Dimensione Formato  
Rochaix and Bassi 2019 LHCphotoprotective.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 574.44 kB
Formato Adobe PDF
574.44 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/992686
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 44
social impact