The long debated protein dynamical transition was recently found also in nonbiological macromolecules, such as poly- N-isopropylacrylamide (PNIPAM) microgels. Here, by using atomistic molecular dynamics simulations, we report a description of the molecular origin of the dynamical transition in these systems. We show that PNIPAM and water dynamics below the dynamical transition temperature T d are dominated by methyl group rotations and hydrogen bonding, respectively. By comparing with bulk water, we unambiguously identify PNIPAM-water hydrogen bonding as mainly responsible for the occurrence of the transition. The observed phenomenology thus crucially depends on the water-macromolecule coupling, being relevant to a wide class of hydrated systems, independently from the biological function.

Water-Polymer Coupling Induces a Dynamical Transition in Microgels

Zanatta, Marco
Membro del Collaboration Group
;
2019-01-01

Abstract

The long debated protein dynamical transition was recently found also in nonbiological macromolecules, such as poly- N-isopropylacrylamide (PNIPAM) microgels. Here, by using atomistic molecular dynamics simulations, we report a description of the molecular origin of the dynamical transition in these systems. We show that PNIPAM and water dynamics below the dynamical transition temperature T d are dominated by methyl group rotations and hydrogen bonding, respectively. By comparing with bulk water, we unambiguously identify PNIPAM-water hydrogen bonding as mainly responsible for the occurrence of the transition. The observed phenomenology thus crucially depends on the water-macromolecule coupling, being relevant to a wide class of hydrated systems, independently from the biological function.
2019
Microgels, PNIPAM, Dynamical transition, molecular dynamics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/992206
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 25
  • ???jsp.display-item.citation.isi??? ND
social impact