TNF-alpha plays a pivotal role in the pathogenesis of acute pancreatitis. Recent studies have shown that TNF-alpha inhibition significantly ameliorates the course of experimental acute pancreatitis, but in this context, the effects of Etanercept, a novel anti-TNF-alpha agent, have not been investigated so far. The aims of the present study are (i) to assess the effects of pharmacological inhibition of TNF-alpha by means of Etanercept on the inflammatory response and apoptosis in a murine model of necrotizing acute pancreatitis and (ii) to compare the results to those observed in TNF-alpha receptor 1 knockout (TNFR1-KO) mice. Necrotizing acute pancreatitis was induced in TNF-alpha wild type for TNFR1 (WT) and TNFR1-KO mice by intraperitoneal injection of cerulein (hourly x5, 50 microg/kg). In another group of WT mice, Etanercept was administered (5 or 10 mg/kg, s.c.) at 1 h after first cerulein injection. Control groups received saline treatment. After 24 h, biochemical, histological, and immunohistochemical evidences of acute pancreatitis developed in all cerulein-treated mice; apoptosis was also present in the pancreas. Contrarily, pancreatitis histological features, amylase and lipase levels, pancreas water content, and myeloperoxidase activity were reduced in a similar degree in Etanercept-treated and TNFR1-KO mice. Likewise, in these two groups, immunohistochemical stainings and terminal deoxynucleotidyltransferase-mediated UTP nick-end labeling assay were found negative. TNF-alpha receptor 1 gene deletion and Etanercept administration ameliorate the course of experimental acute pancreatitis in a similar degree. Future studies on clinical applications of Etanercept in pancreatitis seem promising.

Etanercept attenuates the development of cerulein-induced acute pancreatitis in mice: a comparison with TNF-alpha genetic deletion

Malleo, Giuseppe;
2007-01-01

Abstract

TNF-alpha plays a pivotal role in the pathogenesis of acute pancreatitis. Recent studies have shown that TNF-alpha inhibition significantly ameliorates the course of experimental acute pancreatitis, but in this context, the effects of Etanercept, a novel anti-TNF-alpha agent, have not been investigated so far. The aims of the present study are (i) to assess the effects of pharmacological inhibition of TNF-alpha by means of Etanercept on the inflammatory response and apoptosis in a murine model of necrotizing acute pancreatitis and (ii) to compare the results to those observed in TNF-alpha receptor 1 knockout (TNFR1-KO) mice. Necrotizing acute pancreatitis was induced in TNF-alpha wild type for TNFR1 (WT) and TNFR1-KO mice by intraperitoneal injection of cerulein (hourly x5, 50 microg/kg). In another group of WT mice, Etanercept was administered (5 or 10 mg/kg, s.c.) at 1 h after first cerulein injection. Control groups received saline treatment. After 24 h, biochemical, histological, and immunohistochemical evidences of acute pancreatitis developed in all cerulein-treated mice; apoptosis was also present in the pancreas. Contrarily, pancreatitis histological features, amylase and lipase levels, pancreas water content, and myeloperoxidase activity were reduced in a similar degree in Etanercept-treated and TNFR1-KO mice. Likewise, in these two groups, immunohistochemical stainings and terminal deoxynucleotidyltransferase-mediated UTP nick-end labeling assay were found negative. TNF-alpha receptor 1 gene deletion and Etanercept administration ameliorate the course of experimental acute pancreatitis in a similar degree. Future studies on clinical applications of Etanercept in pancreatitis seem promising.
2007
Acute Disease; Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Ceruletide; Enzyme-Linked Immunosorbent Assay; Etanercept; Fas Ligand Protein; Gene Deletion; Immunoglobulin G; Immunohistochemistry; Inflammation; Intercellular Adhesion Molecule-1; Lymphotoxin-alpha; Mice; Mice, Knockout; P-Selectin; Pancreatitis; Peroxidase; Receptors, Tumor Necrosis Factor; Receptors, Tumor Necrosis Factor, Type I; Tumor Necrosis Factor-alpha; Vascular Endothelial Growth Factor A; bcl-2-Associated X Protein; bcl-Associated Death Protein
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/990408
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 45
social impact