In Parkinson disease (PD), basal forebrain cholinergic loss coincides with midbrain dopaminergic neuron loss and contributes to attentional deficits in PD. We hypothesize that these attentional deficits contribute to L-DOPA-insensitive impairments of mobility and postural control in PD. To assess complex movement control, we developed a novel Complex Motor Control Test (CMCT) for rats. The CMCT consists of several 2 m long beams (plank, 13.34 cm width; round rod, 3.81 cm diameter; square rod, 2.54 cm side length), which can be placed at zero, 22.5° or 45° angles in the vertical plane. Rods can rotate at 1 rpm or 10 rpm. A separate ladder apparatus (100 cm long, 7 cm wide, 2 cm between rungs, 5 mm rung diameter) can be placed at zero, 22.5° or 45° angles in the vertical plane and tilted laterally at 15° or 30° angles. Four high-resolution cameras and mirror system record animals’ performances. Rats are habituated by learning that plank traversal allows entry of home compartments containing individual bedding and palatable food. To separately assess attentional performance, we employed our Sustained Attention Task (SAT), including a distractor condition (dSAT). Our initial experiments determined CMCT and SAT performance in three groups: (1) animals with limited (40-60%) loss of cortical cholinergic afferents following immunotoxin 192-IgG saporin basal forebrain lesions (SAP); (2) animals with dopaminergic deafferentation following 6-OHDA dorsal striatal lesions (6-OHDA); (3) animals with both types of deafferentation (DUAL). SAT performance was dramatically impaired in SAP and DUAL animals. Control animals rapidly traversed angled and rotating rods and angled and tilted ladders. Deafferented animals were able to traverse the plank at all angles as effectively as control animals. Cholinergic lesions robustly impaired animals’ ability to maintain balance on the rods, to re-adjust posture on and traverse rotating rods, and had falls (into a net) or dismounts more frequently than control animals. These data reveal unexpectedly striking impairments in complex gait and movement control resulting from loss of corticopetal cholinergic neurons. These results support the hypothesis that basal forebrain cholinergic cell loss in PD contributes to complex posture and movement control deficits.

Deficits in attentional control of balance, mobility, and complex movements in a rat model of early state, multisystem Parkinson disease.

Paolone G
Conceptualization
;
2011-01-01

Abstract

In Parkinson disease (PD), basal forebrain cholinergic loss coincides with midbrain dopaminergic neuron loss and contributes to attentional deficits in PD. We hypothesize that these attentional deficits contribute to L-DOPA-insensitive impairments of mobility and postural control in PD. To assess complex movement control, we developed a novel Complex Motor Control Test (CMCT) for rats. The CMCT consists of several 2 m long beams (plank, 13.34 cm width; round rod, 3.81 cm diameter; square rod, 2.54 cm side length), which can be placed at zero, 22.5° or 45° angles in the vertical plane. Rods can rotate at 1 rpm or 10 rpm. A separate ladder apparatus (100 cm long, 7 cm wide, 2 cm between rungs, 5 mm rung diameter) can be placed at zero, 22.5° or 45° angles in the vertical plane and tilted laterally at 15° or 30° angles. Four high-resolution cameras and mirror system record animals’ performances. Rats are habituated by learning that plank traversal allows entry of home compartments containing individual bedding and palatable food. To separately assess attentional performance, we employed our Sustained Attention Task (SAT), including a distractor condition (dSAT). Our initial experiments determined CMCT and SAT performance in three groups: (1) animals with limited (40-60%) loss of cortical cholinergic afferents following immunotoxin 192-IgG saporin basal forebrain lesions (SAP); (2) animals with dopaminergic deafferentation following 6-OHDA dorsal striatal lesions (6-OHDA); (3) animals with both types of deafferentation (DUAL). SAT performance was dramatically impaired in SAP and DUAL animals. Control animals rapidly traversed angled and rotating rods and angled and tilted ladders. Deafferented animals were able to traverse the plank at all angles as effectively as control animals. Cholinergic lesions robustly impaired animals’ ability to maintain balance on the rods, to re-adjust posture on and traverse rotating rods, and had falls (into a net) or dismounts more frequently than control animals. These data reveal unexpectedly striking impairments in complex gait and movement control resulting from loss of corticopetal cholinergic neurons. These results support the hypothesis that basal forebrain cholinergic cell loss in PD contributes to complex posture and movement control deficits.
2011
Parkinson's Disease
Attentional control
6-OHDA lesion
cholinergic lesion
Complex Motor Control Test (CMCT) for rats
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/988671
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact