The goal of the present study was to investigate the role of environmental context and drug history in modulating the effects of heroin on locomotor activity and Fos protein expression in the neocortex and striatal complex of the rat. It was found that (1) repeated i.p. administrations of a relatively low dose of heroin (1 mg/kg, i.p.) induced psychomotor sensitization only when the treatment was administered in a relatively 'novel' environment (ie, a unique test environment distinct from the home cage) but not when the same treatment was administered in the home cage; (2) environmental novelty facilitated heroin-induced Fos expression in the caudate, particularly in its most caudal regions; (3) environmental context also modulated heroin-induced Fos expression in the nucleus accumbens and in the neocortex; (4) repeated exposures to heroin dramatically altered its effects on Fos expression in the caudate and in the neocortex; and (5) Fos protein levels in the postero-dorsal caudate, in the shell of the nucleus accumbens, and in the barrel field cortex predicted most of the variance in heroin-induced activity scores, as shown by multiple regression analysis. The present report demonstrates that environment and drug history powerfully interact in shaping the neurobehavioral response to heroin, as previously shown for amphetamine and cocaine. Thus, a full understanding of the mechanisms responsible for the neurobehavioral adaptations produced by addictive drugs will also require taking into due consideration the environment in which drugs are experienced.

Modulatory effect of environmental context and drug history on heroin-induced psychomotor activity and fos protein expression in the rat brain.

Paolone G
Conceptualization
;
2007-01-01

Abstract

The goal of the present study was to investigate the role of environmental context and drug history in modulating the effects of heroin on locomotor activity and Fos protein expression in the neocortex and striatal complex of the rat. It was found that (1) repeated i.p. administrations of a relatively low dose of heroin (1 mg/kg, i.p.) induced psychomotor sensitization only when the treatment was administered in a relatively 'novel' environment (ie, a unique test environment distinct from the home cage) but not when the same treatment was administered in the home cage; (2) environmental novelty facilitated heroin-induced Fos expression in the caudate, particularly in its most caudal regions; (3) environmental context also modulated heroin-induced Fos expression in the nucleus accumbens and in the neocortex; (4) repeated exposures to heroin dramatically altered its effects on Fos expression in the caudate and in the neocortex; and (5) Fos protein levels in the postero-dorsal caudate, in the shell of the nucleus accumbens, and in the barrel field cortex predicted most of the variance in heroin-induced activity scores, as shown by multiple regression analysis. The present report demonstrates that environment and drug history powerfully interact in shaping the neurobehavioral response to heroin, as previously shown for amphetamine and cocaine. Thus, a full understanding of the mechanisms responsible for the neurobehavioral adaptations produced by addictive drugs will also require taking into due consideration the environment in which drugs are experienced.
2007
heroin
environmental modulation
locomotor activity
early gene expression (fos protein)
drug history
File in questo prodotto:
File Dimensione Formato  
7 Paolone Conversi 2007a.pdf

solo utenti autorizzati

Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 397.89 kB
Formato Adobe PDF
397.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/988625
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
social impact