Working at high values of lignocellulosic Dry Matter (DM), as wheat straw, increases the reaction medium viscosity, making the mixing inefficient with the traditional agitators. Batch and fed-batch tests were conducted using different impellers: i) inclined blades, ii) marine impeller, iii) anchor, iv) paravisc and v) double helical impeller. Inclined blades appeared an inadequate device for batch and fed-batch tests. On contrary, double helical impellers and anchor gave optimal performances. An alternative to improve the reactor’s rheology is the modification of the feeding strategy. A particular fed-batch strategy allowed keeping low the reaction medium viscosity by a gradual increasing of the DM content in the reactor. In this way, three main benefits were achieved: i) a very good performances in terms of glucose concentration (85 g/L), ii) a strong reduction of the energetic consumption compared to batch test and iii) the adoption of a simple mixing devise.

Enzymatic hydrolysis at high lignocellulosic content: Optimization of the mixing system geometry and of a fed-batch strategy to increase glucose concentration

Federico Battista
;
2019-01-01

Abstract

Working at high values of lignocellulosic Dry Matter (DM), as wheat straw, increases the reaction medium viscosity, making the mixing inefficient with the traditional agitators. Batch and fed-batch tests were conducted using different impellers: i) inclined blades, ii) marine impeller, iii) anchor, iv) paravisc and v) double helical impeller. Inclined blades appeared an inadequate device for batch and fed-batch tests. On contrary, double helical impellers and anchor gave optimal performances. An alternative to improve the reactor’s rheology is the modification of the feeding strategy. A particular fed-batch strategy allowed keeping low the reaction medium viscosity by a gradual increasing of the DM content in the reactor. In this way, three main benefits were achieved: i) a very good performances in terms of glucose concentration (85 g/L), ii) a strong reduction of the energetic consumption compared to batch test and iii) the adoption of a simple mixing devise.
2019
Bioethanol, High dry matter, Mixing, Enzymatic hydrolysis, Fed batch, Lignocellulosic materials
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/986162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact