Sleep is frequently altered in systemic infections as a component of sickness behavior in response to inflammation. Sleepiness in sickness behavior has been extensively investigated. Much less attention has instead been devoted to sleep and wake alterations in brain infections. Most of these, as other neuroinfections, are prevalent in sub-Saharan Africa. The present overview highlights the importance of this topic from both the clinical and pathogenetic points of view. Vigilance states and their regulation are first summarized, emphasizing that key nodes in this distributed brain system can be targeted by neuroinflammatory signaling. Sleep-wake changes in the parasitic disease human African trypanosomiasis (HAT) and its animal models are then reviewed and discussed. Experimental data have revealed that the suprachiasmatic nucleus, the master circadian pacemaker, and peptidergic cell populations of the lateral hypothalamus (the wake-promoting orexin neurons and the sleep-promoting melanin-concentrating hormone neurons) are targeted by African trypanosome infection. It is then discussed how prominent and disturbing are sleep changes in HIV/AIDS, also when the infection is cured with antiretroviral therapy. This recalls attention on the bidirectional interactions between sleep and immune system, including the specialized brain immune response of which microglial cells are protagonists. Sleep changes in an ancient viral disease, rabies, and in the emerging infection due to Zika virus which causes a congenital syndrome, are also dealt with. Altogether the findings indicate that sleep-wake regulation is targeted by brain infections caused by different pathogens and, although the relevant pathogenetic mechanisms largely remain to be clarified, these alterations differ from hypersomnia occurring in sickness behavior. Thus, brain infections point to the vulnerability of the neural network of sleep-wake regulation as a highly relevant clinical and basic science challenge.

Sleep and brain infections

Tesoriero, Chiara;Del Gallo, Federico;Bentivoglio, Marina
2019-01-01

Abstract

Sleep is frequently altered in systemic infections as a component of sickness behavior in response to inflammation. Sleepiness in sickness behavior has been extensively investigated. Much less attention has instead been devoted to sleep and wake alterations in brain infections. Most of these, as other neuroinfections, are prevalent in sub-Saharan Africa. The present overview highlights the importance of this topic from both the clinical and pathogenetic points of view. Vigilance states and their regulation are first summarized, emphasizing that key nodes in this distributed brain system can be targeted by neuroinflammatory signaling. Sleep-wake changes in the parasitic disease human African trypanosomiasis (HAT) and its animal models are then reviewed and discussed. Experimental data have revealed that the suprachiasmatic nucleus, the master circadian pacemaker, and peptidergic cell populations of the lateral hypothalamus (the wake-promoting orexin neurons and the sleep-promoting melanin-concentrating hormone neurons) are targeted by African trypanosome infection. It is then discussed how prominent and disturbing are sleep changes in HIV/AIDS, also when the infection is cured with antiretroviral therapy. This recalls attention on the bidirectional interactions between sleep and immune system, including the specialized brain immune response of which microglial cells are protagonists. Sleep changes in an ancient viral disease, rabies, and in the emerging infection due to Zika virus which causes a congenital syndrome, are also dealt with. Altogether the findings indicate that sleep-wake regulation is targeted by brain infections caused by different pathogens and, although the relevant pathogenetic mechanisms largely remain to be clarified, these alterations differ from hypersomnia occurring in sickness behavior. Thus, brain infections point to the vulnerability of the neural network of sleep-wake regulation as a highly relevant clinical and basic science challenge.
2019
African trypanosomiasis; HIV/AIDS; NeuroAIDS; Neuroinflammation; Rabies; Sickness behavior; Zika virus
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0361923018303174-main.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 2.58 MB
Formato Adobe PDF
2.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/983711
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 18
social impact