Using the theory of Γ-convergence, we derive from three-dimensional elasticity new one-dimensional models for non-Euclidean elastic ribbons, i.e., ribbons exhibiting spontaneous curvature and twist. We apply the models to shape-selection problems for thin films of nematic elastomers with twist and splay-bend texture of the nematic director. For the former, we discuss the possibility of helicoid-like shapes as an alternative to spiral ribbons.

Shape Programming for Narrow Ribbons of Nematic Elastomers

Agostiniani, Virginia;
2017-01-01

Abstract

Using the theory of Γ-convergence, we derive from three-dimensional elasticity new one-dimensional models for non-Euclidean elastic ribbons, i.e., ribbons exhibiting spontaneous curvature and twist. We apply the models to shape-selection problems for thin films of nematic elastomers with twist and splay-bend texture of the nematic director. For the former, we discuss the possibility of helicoid-like shapes as an alternative to spiral ribbons.
2017
nematic elastomers
dimension reduction
rod theory
File in questo prodotto:
File Dimensione Formato  
Ago_DeS_Kou_revised_no_col.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 4.25 MB
Formato Adobe PDF
4.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/980726
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact