Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by motoneuron death. Several cellular pathways have been described to be involved in ALS pathogenesis; however, the involvement of presynaptic stripping and the related MHC class I molecules in mutant SOD1 motoneurons remains to be clarified. To this purpose, we here investigated, for the first time, the motoneurons behavior, di per seand after facial axonal injury, in terms of synaptic stripping and MHC class I expression in wild-type (Wt) mice and in a murine model of ALS, the SOD1(G93A) mice, at the presymptomatic and symptomatic stage of the disease. Concerning Wt animals, we found a reduction in synaptophysin immunoreactivity and an increase of MHC class I molecules in facial motoneurons after axotomy. In uninjured motoneurons of SOD1(G93A) mice, an altered presynaptic framework was evident, and this phenomenon increased during the disease course. The alteration in the presynaptic input is related to excitatory fibers. Moreover, after injury, a further decrease of excitatory input was not associated to an upregulation of MHC class I molecules in motoneuron soma. This study demonstrates, for the first time, that the presence of mutated SOD1 protein affects the MHC class I molecules expression, altering the presynaptic input in motoneurons. Nevertheless, a positive MHC class I immunolabeling was evident in glial cells around facial injured motoneurons, underlying an involvement of these cells in synaptic stripping. This study contributes to better understand the involvement of the mutated SOD1 protein in the vulnerability of motoneurons after damage.
The role of mutated SOD1 gene in synaptic stripping and MHC class I expression following nerve axotomy in ALS murine model
Kassa, Roman M.;Bonafede, Roberta;Boschi, Federico;Malatesta, Manuela;Mariotti, Raffaella
2018-01-01
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by motoneuron death. Several cellular pathways have been described to be involved in ALS pathogenesis; however, the involvement of presynaptic stripping and the related MHC class I molecules in mutant SOD1 motoneurons remains to be clarified. To this purpose, we here investigated, for the first time, the motoneurons behavior, di per seand after facial axonal injury, in terms of synaptic stripping and MHC class I expression in wild-type (Wt) mice and in a murine model of ALS, the SOD1(G93A) mice, at the presymptomatic and symptomatic stage of the disease. Concerning Wt animals, we found a reduction in synaptophysin immunoreactivity and an increase of MHC class I molecules in facial motoneurons after axotomy. In uninjured motoneurons of SOD1(G93A) mice, an altered presynaptic framework was evident, and this phenomenon increased during the disease course. The alteration in the presynaptic input is related to excitatory fibers. Moreover, after injury, a further decrease of excitatory input was not associated to an upregulation of MHC class I molecules in motoneuron soma. This study demonstrates, for the first time, that the presence of mutated SOD1 protein affects the MHC class I molecules expression, altering the presynaptic input in motoneurons. Nevertheless, a positive MHC class I immunolabeling was evident in glial cells around facial injured motoneurons, underlying an involvement of these cells in synaptic stripping. This study contributes to better understand the involvement of the mutated SOD1 protein in the vulnerability of motoneurons after damage.File | Dimensione | Formato | |
---|---|---|---|
2904-18668-2-PB.pdf
accesso aperto
Descrizione: CC BY NC 4.0 publisher version
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
853.69 kB
Formato
Adobe PDF
|
853.69 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.