Cancer immunotherapy is a promising strategy based on the ability of the immune system to kill selected cells. In the development of an effective T-cell therapy the non-invasive cell tracking methods play a crucial role. Here we investigate the potentialities of T-cell marked with radionuclides in order to detect their localization with imaging techniques in small animal rodents. A protocol to label T-cells with 32 P-ATP was tested and evaluated. The homing of 32 P-ATP labeled T lymphocytes was investigated by Cerenkov luminescence imaging and radioluminescence imaging The first approach relies on the acquisition of Cerenkov photons produced by the beta particles emitted by the 32 P internalized by lymphocytes; the second one on the detection of photons coming from the conversion of radioactive energy in light done by scintillator crystals layered on the animals. The results show that T-cell biodistribution can be optically observed by both Cerenkov and radioluminescence imaging in small animal rodents in in-vivo and ex-vivo acquisitions. T-cell localization in the tumor mass was definitively confirmed by flow cytometry. This article is protected by copyright. All rights reserved.
T-cell tracking using Cerenkov and radioluminescence imaging
Boschi, F;De Sanctis, F;Ugel, S;
2018-01-01
Abstract
Cancer immunotherapy is a promising strategy based on the ability of the immune system to kill selected cells. In the development of an effective T-cell therapy the non-invasive cell tracking methods play a crucial role. Here we investigate the potentialities of T-cell marked with radionuclides in order to detect their localization with imaging techniques in small animal rodents. A protocol to label T-cells with 32 P-ATP was tested and evaluated. The homing of 32 P-ATP labeled T lymphocytes was investigated by Cerenkov luminescence imaging and radioluminescence imaging The first approach relies on the acquisition of Cerenkov photons produced by the beta particles emitted by the 32 P internalized by lymphocytes; the second one on the detection of photons coming from the conversion of radioactive energy in light done by scintillator crystals layered on the animals. The results show that T-cell biodistribution can be optically observed by both Cerenkov and radioluminescence imaging in small animal rodents in in-vivo and ex-vivo acquisitions. T-cell localization in the tumor mass was definitively confirmed by flow cytometry. This article is protected by copyright. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.