Purpose: Scaffolds play a critical role in tissue engineering, which aims to regenerate missing tissues or organs. For developing an effective bone regeneration strategy, we studied the efficacy of bone regeneration using the innovative bone scaffold “Reinforced Bioactive Bone Chip” (IBI S/A-Mezzovico, Ticino-CH), which has been specifically developed for applications in regenerative medicine and therapy bone tissue engineering, on the calvarial defect of rats. Methods and materials: A full-thickness defect (5mm×8mm) was created on each parietal region of Wistar rats (Harlan, Italy) by piezosurgery, a surgical technique that creates an effective osteotomy with no trauma to soft tissue and without causing bone necrosis. Bone scaffold was implanted in the right cranial defect whereas the left defect was used as control. Macroscopical evaluation of the surgical site and histological studies were performed to investigate the level of bone formation. Results: The results confirmed that the treated defects with “Reinforced Bioactive Bone Chip” scaffold showed significant bone formation and maturation in comparison with the control group. Conclusion: These results are promising and “Reinforced Bioactive Bone Chip” could be considered for future clinical use in human, mainly in the field of regeneration and/or replacement of bone tissue compartment of maxillofacial surgery.

Reinforced bioactive bone chip scaffold for bone regeneration: Experimental study

Zotti, Francesca;Rodella, Luigi Fabrizio;
2014-01-01

Abstract

Purpose: Scaffolds play a critical role in tissue engineering, which aims to regenerate missing tissues or organs. For developing an effective bone regeneration strategy, we studied the efficacy of bone regeneration using the innovative bone scaffold “Reinforced Bioactive Bone Chip” (IBI S/A-Mezzovico, Ticino-CH), which has been specifically developed for applications in regenerative medicine and therapy bone tissue engineering, on the calvarial defect of rats. Methods and materials: A full-thickness defect (5mm×8mm) was created on each parietal region of Wistar rats (Harlan, Italy) by piezosurgery, a surgical technique that creates an effective osteotomy with no trauma to soft tissue and without causing bone necrosis. Bone scaffold was implanted in the right cranial defect whereas the left defect was used as control. Macroscopical evaluation of the surgical site and histological studies were performed to investigate the level of bone formation. Results: The results confirmed that the treated defects with “Reinforced Bioactive Bone Chip” scaffold showed significant bone formation and maturation in comparison with the control group. Conclusion: These results are promising and “Reinforced Bioactive Bone Chip” could be considered for future clinical use in human, mainly in the field of regeneration and/or replacement of bone tissue compartment of maxillofacial surgery.
2014
REINFORCED SCAFFOLDS, BONE REGENERATION, BIOACTIVE SCAFFOLDS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/975513
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact