The sustainable production of fertilizers, especially those based on phosphorus, will be one of the challenges of this century. Organic wastes produced by the agriculture, urban and industrial sectors are rich in nutrients which can be conveniently recovered and used as fertilizers. In this study five full scale systems for the recovery of nutrients from anaerobic digestate produced in farm-scale plants were studied. Monitored technologies were: drying with acidic recovery, stripping with acidic recovery and membrane separation. Results showed good performances in terms of nutrients recovery with average yields always over 50% for both nitrogen and phosphorus. The techno-economic assessment showed how the specificity of the monitored systems played a major role: in particular, membranes were able to produce a stream of virtually pure water (up to 50% of the treated digestate) reducing the digestate volume, while drying, because of the limitation on recoverable heat, could treat only a limited portion (lower than 50%) of produced digestate while stripping suffered some problems because of the presence of suspended solids in the liquid fraction treated. Specific capital and operational costs for the three systems were comparable ranging between 5.40 and 6.97 € per m3 of digestate treated and followed the order stripping > drying > membranes. Costs determined in this study were similar to those observed in other European experiences reported in literature.
Biorefinery of cellulosic primary sludge towards targeted Short Chain Fatty Acids, phosphorus and methane recovery
Nicola Frison
;
2018-01-01
Abstract
The sustainable production of fertilizers, especially those based on phosphorus, will be one of the challenges of this century. Organic wastes produced by the agriculture, urban and industrial sectors are rich in nutrients which can be conveniently recovered and used as fertilizers. In this study five full scale systems for the recovery of nutrients from anaerobic digestate produced in farm-scale plants were studied. Monitored technologies were: drying with acidic recovery, stripping with acidic recovery and membrane separation. Results showed good performances in terms of nutrients recovery with average yields always over 50% for both nitrogen and phosphorus. The techno-economic assessment showed how the specificity of the monitored systems played a major role: in particular, membranes were able to produce a stream of virtually pure water (up to 50% of the treated digestate) reducing the digestate volume, while drying, because of the limitation on recoverable heat, could treat only a limited portion (lower than 50%) of produced digestate while stripping suffered some problems because of the presence of suspended solids in the liquid fraction treated. Specific capital and operational costs for the three systems were comparable ranging between 5.40 and 6.97 € per m3 of digestate treated and followed the order stripping > drying > membranes. Costs determined in this study were similar to those observed in other European experiences reported in literature.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.