cAMP-dependent protein kinase (PKA) is composed of two genetically distinct catalytic (C) and regulatory (R) subunits. There are two different classes of PKA, designated as type I and type II, which contain distinct R subunits (RI or RII, respectively) but share a common C subunit. Enhanced expression of type I PKA has been correlated with cell proliferation and neoplastic transformation. Detection of the different PKA subunits is usually performed by photoaffinity labeling with 8-N3-32P-cAMP or by radioimmunolabeling techniques. Both techniques are time consuming and require a high number of cells and the use of radioactive reagents. Using the MCF-10A normal human mammary cell line infected with a recombinant retroviral vector containing the human RI alpha gene (MCF-10A RI alpha), we have developed a flow-cytometric assay to detect the intracellular content of RI alpha protein in human cells. MCF-10A and MCF-10A RI alpha cells were fixed in 1.5% paraformaldehyde at 37 degrees C for 15 min and permeabilized by methanol and acetone (1:1) at -20 degrees C for 5 min before staining with a specific IgG2a MoAb followed by a FITC-conjugate rabbit-anti mouse IgG. This procedure was also successfully utilized to recognize RI alpha protein content in human peripheral blood lymphocytes. Flow-cytometric detection of the RI alpha subunit in human cells is feasible and allows the study of the role of type I PKA in cell growth and neoplastic transformation.

Flow-cytometric detection of the RI alpha subunit of type I cAMP-dependent protein kinase in human cells.

Pepe S;Tortora G;Bianco AR
1994-01-01

Abstract

cAMP-dependent protein kinase (PKA) is composed of two genetically distinct catalytic (C) and regulatory (R) subunits. There are two different classes of PKA, designated as type I and type II, which contain distinct R subunits (RI or RII, respectively) but share a common C subunit. Enhanced expression of type I PKA has been correlated with cell proliferation and neoplastic transformation. Detection of the different PKA subunits is usually performed by photoaffinity labeling with 8-N3-32P-cAMP or by radioimmunolabeling techniques. Both techniques are time consuming and require a high number of cells and the use of radioactive reagents. Using the MCF-10A normal human mammary cell line infected with a recombinant retroviral vector containing the human RI alpha gene (MCF-10A RI alpha), we have developed a flow-cytometric assay to detect the intracellular content of RI alpha protein in human cells. MCF-10A and MCF-10A RI alpha cells were fixed in 1.5% paraformaldehyde at 37 degrees C for 15 min and permeabilized by methanol and acetone (1:1) at -20 degrees C for 5 min before staining with a specific IgG2a MoAb followed by a FITC-conjugate rabbit-anti mouse IgG. This procedure was also successfully utilized to recognize RI alpha protein content in human peripheral blood lymphocytes. Flow-cytometric detection of the RI alpha subunit in human cells is feasible and allows the study of the role of type I PKA in cell growth and neoplastic transformation.
1994
Immunofluorescence, cAMPdependent protein kinase, cell cycle, human lymphocytes, human mammary cells
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/974324
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact