In HL-60 leukemia cells the site-selective cAMP analog, 8-Cl-cAMP, at a dose of 5 microM produced growth inhibition with no signs of toxicity, whereas granulocyte-macrophage colony stimulating factor (GM-CSF) exerted an early transient increase of cell proliferation which was followed by differentiation toward monocytes. 8-Cl-cAMP in combination with GM-CSF blocked the growth stimulation due to GM-CSF and demonstrated a synergistic effect on the differentiation of HL-60 cells. The early proliferative effect of GM-CSF was correlated with an increased expression of type I regulatory subunit of cAMP-dependent protein kinase (RI alpha). Treatment with an RI alpha antisense oligodeoxynucleotide suppressed the GM-CSF-inducible cell proliferation and differentiation. Conversely, an RII beta antisense oligodeoxynucleotide, which suppresses the RII beta and causes a compensatory increase in RI alpha level, greatly enhanced the early proliferative input and the differentiation induced by GM-CSF. These results provide an insight into the mechanism of action of GM-CSF and the rationale for a combination differentiation therapy with 8-Cl-cAMP and GM-CSF.
Cooperative effect of 8-Cl-cAMP and rhGM-CSF on the differentiation of HL-60 human leukemia cells.
Tortora G;Pepe S;
1991-01-01
Abstract
In HL-60 leukemia cells the site-selective cAMP analog, 8-Cl-cAMP, at a dose of 5 microM produced growth inhibition with no signs of toxicity, whereas granulocyte-macrophage colony stimulating factor (GM-CSF) exerted an early transient increase of cell proliferation which was followed by differentiation toward monocytes. 8-Cl-cAMP in combination with GM-CSF blocked the growth stimulation due to GM-CSF and demonstrated a synergistic effect on the differentiation of HL-60 cells. The early proliferative effect of GM-CSF was correlated with an increased expression of type I regulatory subunit of cAMP-dependent protein kinase (RI alpha). Treatment with an RI alpha antisense oligodeoxynucleotide suppressed the GM-CSF-inducible cell proliferation and differentiation. Conversely, an RII beta antisense oligodeoxynucleotide, which suppresses the RII beta and causes a compensatory increase in RI alpha level, greatly enhanced the early proliferative input and the differentiation induced by GM-CSF. These results provide an insight into the mechanism of action of GM-CSF and the rationale for a combination differentiation therapy with 8-Cl-cAMP and GM-CSF.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.