Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal of all human cancers with a high mortality rate. Resistance to conventional treatments and chemotherapeutics is a typical feature of PDAC. To investigate the causes of drug resistance it is essential to deeply investigate the mechanism of action of chemotherapeutics. In this study, we performed an in depth shotgun proteomic approach using the label-free proteomic SWATH-MS analysis to investigate novel insights of the mechanism of action of the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) in PDAC cells. This proteomic analysis in PaCa44 cells and data elaboration of TSA-regulated proteins by bioinformatics showed an overall up-regulation of cytokeratins and other proteins related to the cytoskeleton organization, keratinization, and apoptotic cell death. On the contrary, a large amount of the down-regulated proteins by TSA treatment belongs to the cellular energetic metabolism and to the machinery of protein synthesis, such as ribosomal proteins, determining synergistic cell growth inhibition by the combined treatment of TSA and the glycolytic inhibitor 2-deoxy-D-glucose in a panel of PDAC cell lines. Data are available via ProteomeXchange with identifier PXD007801. This article is protected by copyright. All rights reserved.

Trichostatin A alters cytoskeleton and energy metabolism of pancreatic adenocarcinoma cells: an in depth proteomic study

DALLA POZZA, Elisa;BRANDI, JESSICA;PACCHIANA, Raffaella;CECCONI, Daniela;DONADELLI, Massimo
2018-01-01

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal of all human cancers with a high mortality rate. Resistance to conventional treatments and chemotherapeutics is a typical feature of PDAC. To investigate the causes of drug resistance it is essential to deeply investigate the mechanism of action of chemotherapeutics. In this study, we performed an in depth shotgun proteomic approach using the label-free proteomic SWATH-MS analysis to investigate novel insights of the mechanism of action of the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) in PDAC cells. This proteomic analysis in PaCa44 cells and data elaboration of TSA-regulated proteins by bioinformatics showed an overall up-regulation of cytokeratins and other proteins related to the cytoskeleton organization, keratinization, and apoptotic cell death. On the contrary, a large amount of the down-regulated proteins by TSA treatment belongs to the cellular energetic metabolism and to the machinery of protein synthesis, such as ribosomal proteins, determining synergistic cell growth inhibition by the combined treatment of TSA and the glycolytic inhibitor 2-deoxy-D-glucose in a panel of PDAC cell lines. Data are available via ProteomeXchange with identifier PXD007801. This article is protected by copyright. All rights reserved.
2018
2-deoxy-D-glucose; cytoskeleton; metabolism; pancreatic cancer; shotgun proteomics; trichostatin A
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/972650
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 30
social impact