Aims: Calcific aortic valve disease is the most common heart valve disease in the Western world. Bicuspid and tricuspid aortic valve calcifications are traditionally considered together although the dynamics of the disease progression is different between the two groups of patients. Notch signaling is critical for bicuspid valve development and NOTCH] mutations are associated with bicuspid valve and calcification. We hypothesized that Notch-dependent mechanisms of valve mineralization might be different in the two groups.Methods and results: We used aortic valve interstitial cells and valve endothelial cells from patients with calcific aortic stenosis with bicuspid or tricuspid aortic valve. Expression of Notch-related genes in valve interstitial cells by qPCR was different between bicuspid and tricuspid groups. Discriminant analysis of gene expression pattern in the interstitial cells revealed that the cells from calcified bicuspid valves formed a separate group from calcified tricuspid and control cells. Interstitial cells from bicuspid calcified valves demonstrated significantly higher sensitivity to stimuli at early stages of induced proosteogenic differentiation and were significantly more sensitive to the activation of proosteogenic OPN, ALP and POSTIN expression by Notch activation. Notch-activated endothelial-to-mesenchymal transition and the corresponding expression of HEY1 and SLUG were also more prominent in bicuspid valve derived endothelial cells compared to the cells from calcified tricuspid and healthy valves.Conclusion: Early signaling events including Notch-dependent mechanisms that are responsible for the initiation of aortic valve calcification are different between the patients with bicuspid and tricuspid aortic valves.

Different Notch signaling in cells from calcified bicuspid and tricuspid aortic valves

Kostina, Aleksandra;Faggian, G;
2018-01-01

Abstract

Aims: Calcific aortic valve disease is the most common heart valve disease in the Western world. Bicuspid and tricuspid aortic valve calcifications are traditionally considered together although the dynamics of the disease progression is different between the two groups of patients. Notch signaling is critical for bicuspid valve development and NOTCH] mutations are associated with bicuspid valve and calcification. We hypothesized that Notch-dependent mechanisms of valve mineralization might be different in the two groups.Methods and results: We used aortic valve interstitial cells and valve endothelial cells from patients with calcific aortic stenosis with bicuspid or tricuspid aortic valve. Expression of Notch-related genes in valve interstitial cells by qPCR was different between bicuspid and tricuspid groups. Discriminant analysis of gene expression pattern in the interstitial cells revealed that the cells from calcified bicuspid valves formed a separate group from calcified tricuspid and control cells. Interstitial cells from bicuspid calcified valves demonstrated significantly higher sensitivity to stimuli at early stages of induced proosteogenic differentiation and were significantly more sensitive to the activation of proosteogenic OPN, ALP and POSTIN expression by Notch activation. Notch-activated endothelial-to-mesenchymal transition and the corresponding expression of HEY1 and SLUG were also more prominent in bicuspid valve derived endothelial cells compared to the cells from calcified tricuspid and healthy valves.Conclusion: Early signaling events including Notch-dependent mechanisms that are responsible for the initiation of aortic valve calcification are different between the patients with bicuspid and tricuspid aortic valves.
Calcific aortic valve disease; Endothelial cells; Interstitial cells; Notch; Aortic Valve; Aortic Valve Stenosis; Biomarkers; Calcinosis; Cell Differentiation; Discriminant Analysis; Endothelial Cells; Fibrosis; Gene Expression Regulation; Humans; Ligands; Mesoderm; Mitral Valve; Muscle, Smooth; Osteoblasts; Osteogenesis; Osteopontin; Receptors, Notch; Tricuspid Valve; Signal Transduction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/970002
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 28
social impact