A trader wishes to execute a given number of shares of an illiquid asset. Since the asset price also depends on the trading behaviour, the trader main aim is to find the execution strategy that minimizes the related expected costs. We solve this problem in a discrete time framework, by modeling the asset price dynamic as an arithmetic random walk with drift and volatility both modeled as Markov stochastic processes. The market impact is assumed to follow a Markov process. We found the unique execution strategy minimizing the implementation shortfall when short selling is allowed. This optimal strategy is given as solution of a forward-backward system of stochastic equations depending on conditional expectations of future values of model parameters. In the opposite case, namely when short selling is prohibited, we numerically obtain the solution for the associated Bellman equation that an optimal trading strategy must satisfy.

Optimal execution strategy in liquidity framework

BENAZZOLI, Chiara;DI PERSIO, Luca
2017-01-01

Abstract

A trader wishes to execute a given number of shares of an illiquid asset. Since the asset price also depends on the trading behaviour, the trader main aim is to find the execution strategy that minimizes the related expected costs. We solve this problem in a discrete time framework, by modeling the asset price dynamic as an arithmetic random walk with drift and volatility both modeled as Markov stochastic processes. The market impact is assumed to follow a Markov process. We found the unique execution strategy minimizing the implementation shortfall when short selling is allowed. This optimal strategy is given as solution of a forward-backward system of stochastic equations depending on conditional expectations of future values of model parameters. In the opposite case, namely when short selling is prohibited, we numerically obtain the solution for the associated Bellman equation that an optimal trading strategy must satisfy.
2017
pricing models
liquid/illiquid models
forward-backward stochastic differential equations
File in questo prodotto:
File Dimensione Formato  
Optimal execution strategy in liquidity framework.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Dominio pubblico
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/968432
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact