Photobacterium profundum is a cosmopolitan marine bacterium capable of growth at low temperature and high hydrostatic pressure. Multiple strains of P. profundum have been isolated from different depths of the ocean and display remarkable differences in their physiological responses to pressure. The genome sequence of the deep-sea piezopsychrophilic strain Photobacterium profundum SS9 has provided some clues regarding the genetic features required for growth in the deep sea. The sequenced genome of Photobacterium profundum strain 3TCK, a non-piezophilic strain isolated from a shallow-water environment, is now available and its analysis expands the identification of unique genomic features that correlate to environmental differences and define the Hutchinsonian niche of each strain. These differences range from variations in gene content to specific gene sequences under positive selection. Genome plasticity between Photobacterium bathytypes was investigated when strain 3TCK-specific genes involved in photorepair were introduced to SS9, demonstrating that horizontal gene transfer can provide a mechanism for rapid colonisation of new environments.

Ecotype diversity and conversion in Photobacterium profundum strains

VITULO, Nicola;
2014-01-01

Abstract

Photobacterium profundum is a cosmopolitan marine bacterium capable of growth at low temperature and high hydrostatic pressure. Multiple strains of P. profundum have been isolated from different depths of the ocean and display remarkable differences in their physiological responses to pressure. The genome sequence of the deep-sea piezopsychrophilic strain Photobacterium profundum SS9 has provided some clues regarding the genetic features required for growth in the deep sea. The sequenced genome of Photobacterium profundum strain 3TCK, a non-piezophilic strain isolated from a shallow-water environment, is now available and its analysis expands the identification of unique genomic features that correlate to environmental differences and define the Hutchinsonian niche of each strain. These differences range from variations in gene content to specific gene sequences under positive selection. Genome plasticity between Photobacterium bathytypes was investigated when strain 3TCK-specific genes involved in photorepair were introduced to SS9, demonstrating that horizontal gene transfer can provide a mechanism for rapid colonisation of new environments.
2014
Photobacterium; Ecotype; Gene Expression Regulation, Bacterial; Genetic Variation; Genome, Bacterial
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/963858
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact