Modeling and simulation of biological systems is a key requirement for integrating invitro and in-vivo experimental data. In-silico simulation allows testing different experimental conditions, thus helping in the discovery of the dynamics that regulate the system. These dynamics include errors in the cellular information processing that are responsible for diseases such as cancer, autoimmunity, and diabetes as well as drug effects to the system (Gonalves, 2013). In this context, modeling approaches can be classified into two categories: quantitative and qualitative models. Quantitative modeling allows for a natural representation of molecular and gene networks and provides the most precise prediction. Nevertheless, the lack of kinetic data (and of quantitative data in general) hampers its use for many situations (Le Novere, 2015). In contrast, qualitative models simplify the biological reality and are often able to reproduce the system behavior. They cannot describe actual concentration levels nor realistic time scales. As a consequence, they cannot be used to explain and predict the outcome of biological experiments that yield quantitative data. However, given a biological network consisting of input (e.g., receptors), intermediate, and output (e.g., transcription factors) signals, they allow studying the input-output relationships through discrete simulation (Samaga, 2013). Boolean models are gaining an increasing interest in reproducing dynamic behaviors, understanding processes, and predicting emerging properties of cellular signaling networks through in-silico experiments. They are emerging as a valid alternative to the quantitative approaches (i.e., based on ordinary differential equations) for exploratory modeling when little is known about reaction kinetics or equilibrium constants in the context of gene expression or signaling. Even though several approaches and software have been recently proposed for logic modeling of biological systems, they are limited to specific contexts and they lack of automation in analyzing biological properties such as complex attractors, and molecule vulnerability. This thesis proposes a platform based on Electronic Design Automation (EDA) technologies for qualitative modeling and simulation of Biological Systems. It aims at overtaking limitations that affect the most recent qualitative tools.

Modeling and Simulation of Biological Systems through Electronic Design Automation techniques

Distefano, Rosario
2017-01-01

Abstract

Modeling and simulation of biological systems is a key requirement for integrating invitro and in-vivo experimental data. In-silico simulation allows testing different experimental conditions, thus helping in the discovery of the dynamics that regulate the system. These dynamics include errors in the cellular information processing that are responsible for diseases such as cancer, autoimmunity, and diabetes as well as drug effects to the system (Gonalves, 2013). In this context, modeling approaches can be classified into two categories: quantitative and qualitative models. Quantitative modeling allows for a natural representation of molecular and gene networks and provides the most precise prediction. Nevertheless, the lack of kinetic data (and of quantitative data in general) hampers its use for many situations (Le Novere, 2015). In contrast, qualitative models simplify the biological reality and are often able to reproduce the system behavior. They cannot describe actual concentration levels nor realistic time scales. As a consequence, they cannot be used to explain and predict the outcome of biological experiments that yield quantitative data. However, given a biological network consisting of input (e.g., receptors), intermediate, and output (e.g., transcription factors) signals, they allow studying the input-output relationships through discrete simulation (Samaga, 2013). Boolean models are gaining an increasing interest in reproducing dynamic behaviors, understanding processes, and predicting emerging properties of cellular signaling networks through in-silico experiments. They are emerging as a valid alternative to the quantitative approaches (i.e., based on ordinary differential equations) for exploratory modeling when little is known about reaction kinetics or equilibrium constants in the context of gene expression or signaling. Even though several approaches and software have been recently proposed for logic modeling of biological systems, they are limited to specific contexts and they lack of automation in analyzing biological properties such as complex attractors, and molecule vulnerability. This thesis proposes a platform based on Electronic Design Automation (EDA) technologies for qualitative modeling and simulation of Biological Systems. It aims at overtaking limitations that affect the most recent qualitative tools.
2017
EDA, Modeling, Biological Systems, SBML, Systems Biology, SystemC
File in questo prodotto:
File Dimensione Formato  
PhD thesis - Rosario Distefano.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Dominio pubblico
Dimensione 7.09 MB
Formato Adobe PDF
7.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/963108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact