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1

Introduction

Modeling and simulation of biological systems is a key requirement for integrating in-
vitro and in-vivo experimental data. In-silico simulation allows testing different experi-
mental conditions, thus helping in the discovery of the dynamics that regulate the system.
These dynamics include errors in the cellular information processing that are responsi-
ble for diseases such as cancer, autoimmunity, and diabetes as well as drug effects to the
system (Gonalves et al. [46]).

In this context, modeling approaches can be classified into two categories: quantita-
tive and qualitative models. Quantitative modeling allows for a natural representation of
molecular and gene networks and provides the most precise prediction. Nevertheless, the
lack of kinetic data (and of quantitative data in general) hampers its use for many situa-
tions (Le Novere [72]). In contrast, qualitative models simplify the biological reality and
are often able to reproduce the system behavior. They cannot describe actual concentra-
tion levels nor realistic time scales. As a consequence, they cannot be used to explain and
predict the outcome of biological experiments that yield quantitative data. However, given
a biological network consisting of input (e.g., receptors), intermediate, and output (e.g.,
transcription factors) signals, they allow studying the input-output relationships through
discrete simulation (Samaga et al. [99]).

Boolean models are gaining an increasing interest in reproducing dynamic behav-
iors, understanding processes, and predicting emerging properties of cellular signaling
networks through in-silico experiments. They are emerging as a valid alternative to the
quantitative approaches (i.e., based on ordinary differential equations) for exploratory
modeling when little is known about reaction kinetics or equilibrium constants in the
context of gene expression or signaling. Even though several approaches and software
have been recently proposed for logic modeling of biological systems, they are limited to
specific contexts and they lack of automation in analyzing biological properties such as
complex attractors, and molecule vulnerability.

1.1 Aims of the thesis

This thesis proposes a platform based on Electronic Design Automation (EDA) technolo-
gies for qualitative modeling and simulation of Biological Systems. It aims at overtaking
limitations that affect the most recent qualitative tools. In particular, tools do not support
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the simulation complexity of large networks, and lack of automation in analyzing bio-
logical properties such as complex attractors and molecule vulnerability. For example, in
BoolNet (Müssel et al. [87]), the attractor identification using the non-heuristic analysis
is limited to networks with 29 variables. For larger systems, they can be inferred heuristi-
cally. However, this approach does not guarantee that all attractors can be identified.

The proposed platform allows performing both automatics and efficient system sim-
ulation. Being based on languages and design tools well-established in the EDA field,
it allows addressing high computational costs normally associated with the modeling and
simulation of biological systems (Bombieri et al. [8], Distefano et al. [29]). The simulation
core BIODEA relies on a discrete event-based framework developed in SystemC, which
is the de-facto reference standard language in EDA for efficient and accurate simulations
of systems at different levels of abstraction. Based on SystemC, BIODEA applies method-
ologies and languages well established in the Electronic Design Automation (EDA) field,
such as assertion-based verification (ABV) and mutation analysis, to analyze

• Complex attractors (e.g., protein oscillations). In the context of discrete logic-based
dynamical models, the attractors identification and analysis, in which stable cycles of
states are represented, is a dominant task. As attractors comprise the states in which
biological network dwells most of the time, they can be often linked to phenotypes
(Kauffman [65], Li et al. [77]).

• Robustness/Sensitivity of signaling networks. Robustness analysis aims at investigat-
ing how biological systems keep their functionality under perturbation, without being
disrupted or heavily modified. Sensitivity analysis represents the opposite of the Ro-
bustness analysis.

Chapter 4 describes the BIODEA framework in detail, while main characteristics and
contributions are following summarized:

• It relies on a discrete event-based computational model, in which each network entity
is modeled through Finite State Machines (FSMs).

• It uses SystemC, which is the standard, reference language in the EDA field for mod-
eling and verifying complex systems at different abstraction levels. SystemC-based
verification is the de-facto an alternative to static verification techniques (e.g., model
checking) when such formal techniques cannot deal with the state-space complexity
of the model.

• It automatically generates a SystemC model from a SBML description
• Dynamics of variables is explored through a hybrid approach: Deterministic to explore

continuous units (e.g., activation delay times, protein lifetimes, etc.), and stochastic to
explore molecular concentrations values.

• It relies on Assertion-based Verification (ABV) technique, in which any property is
formally described through the Property Specification Language (PSL) and, then, au-
tomatically synthesized and integrated into the simulation system.

• The framework implements mutation analysis, a technique broadly adopted in the con-
text of Software testing, to simulate the system behavior under perturbations. Given
any variable configuration, deviations from standard behaviors are modeled and simu-
lated by introducing syntactically changes to the system model (mutations). Examples
are extra activation or inhibitions of any protein, delay time or lifetime modifications.
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Figure 1.1 shows an overview of the BIODEA modeling and simulation flow, which
consists of three phases:

1. Modeling of Biological Entities in SystemC.
2. Network parameterization through Assertion-based Verification. By using assertion-

based verification, biological properties can be formally defined through the property
specification languages (PSL) and, then, automatically synthesized and integrated as
checkers into the simulation system.

3. Robustness/Sensitivity Analysis through Assertion-based Verification and Mutation
Analysis.

Fig. 1.1. The BIODEA framework overview.

In order to automate and provide an easy interface to execute the robustness/sen-
sitivity analysis, especially the one based on drug targeting, it has been developed a
web-oriented platform called SyQUAL. SyQUAL uses BIODEA as simulation core. The
platform provides both synchronous and asynchronous updating policies for simulation,
where the asynchronous method relies on a time-delayed updating policy controlled by
topology-based constraints. SyQUAL provides support for Systems Biology Markup Lan-
guage (SBML), the state of the art description model for Biological Systems data ex-
changes. SBML is supported according to its two most used declensions: SBML Level 2
for quantitative descriptions and SBML qual for qualitative descriptions.
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It collects the information described in any SBML and uses it to generate SystemC-
based simulators “on-the-fly”. Simulation can be performed using a (Zero or Drug)
Knowledge-based Knock Out approach, in which biological entities can be knocked out
without using any prior knowledge or using drug targeting. Simulation relies on syn-
chronous and asynchronous updating policies, in which a single global time step is coun-
terposed to different local time steps, respectively. Chapter 5 provides more details re-
garding the SyQUAL platform.

1.2 Thesis overview

The thesis starts introducing notions on Systems Biology and EDA, focusing on languages
and methodologies designed for modeling and simulation of systems, continuing with the
description of the proposed platform, and closing with experimental results and conclu-
sions.

Chapter 2 gives an overview of general molecular biology concepts, cell functionality,
and the role of modeling in Systems Biology. Then, it discusses the State of the Art of mod-
eling and simulation of Biological Systems. Section 2.1 describes the fundamental unit of
life, the Cell, the basis for who is familiar with EDA but not with Systems Biology, and
then illustrates the principal concepts regarding the biological elements involved into the
main cell activities, such as genes, proteins, and miRNAs. Section concludes by describing
main biological functionalities, such as signaling, gene regulation, and metabolism. Sec-
tion 2.2 introduces the Systems Biology, what is a model in Systems Biology, and which
motivations stand behind modeling. Section 2.3 discusses the two de facto standard de-
scription models used for biological data exchange. Section 2.4 focuses on the description
of methodologies for modeling biological systems through a quantitative (Section 2.4.2),
semi-quantitative (Section 2.4.2), and qualitative (Section 2.4.2) perspective.

Chapter 3 describes general concepts regarding embedded systems, used to introduce
the context on which the thesis work is focused on. Section 3.1 describes basic con-
cepts regarding the Electronic Design Automation, whose purpose is to design electronic
products of all kinds. Finally, Section 3.2 presents SystemC, one of the most popular em-
bedded system modeling description languages. It describes main SystemC components,
especially for who is not familiar with these concepts.

Chapter 4 describes the BIODEA framework, a first generalizable approach for mod-
eling and simulation of Biological Systems through EDA techniques and languages. Sec-
tion 4.1 discusses how biological entities are modeled and then translated in a standalone
SystemC simulator. Section 4.2 describes the Assertion-based Verification (ABV) tech-
niques applied to investigate behaviors of interest through system parameters estimation.
Finally, Section 4.3 presents how faults injection has been applied to alter the biological
system behavior, in order to investigate the system robustness/sensitivity under perturba-
tion.

Chapter 5 presents the SyQUAL, a platform for robustness/sensitivity analysis. Sec-
tion 5.1 describes the platform architecture and its building blocks.

Chapter 6 shows how BIODEA and SyQUAL have been applied to formalize and ver-
ify biological hypotheses on given biological systems. Sections show experimental re-
sults obtained by modeling and simulation biological systems according to different cel-
lular functionalities, such as signaling and gene regulation. Each biological case study
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is correlated by a (i) introduction to the biological phenomenon, (ii) experimental con-
ditions, (iii) biological hypotheses to be investigated, (iv) experimental results, and (v)
conclusions. Section 6.1 describes the Signaling Network Controlling LFA-1 beta2 inte-
grin activation mediating Leukocyte recruitment from the blood into the tissues, focused
on uncover those dynamics behind the integrin periodic oscillation. Section 6.2 describes
the Colitis-associated Colon Cancer (CAC) Network. It tries to uncover those dynamics
that stand behind the inflammation-associated tumorigenesis.

Chapter 7 concludes the thesis discussing main results and future extensions.





2

Modeling and Simulation of Biological Systems

This chapter gives an overview of general molecular biology concepts, cell functionality,
and the role of modeling in Systems Biology. Then, it discusses the State of the Art of
modeling and simulation of biological systems.

Section 2.1 describes the fundamental unit of life, the Cell, the basis for who is fa-
miliar with EDA but not with Systems Biology, and then illustrates the principal concepts
regarding the biological elements involved into the main cell activities, such as genes,
proteins, and miRNAs. Section concludes by describing main biological functionalities,
such as signaling, gene regulation, and metabolism. Section 2.2 introduces the Systems
Biology, what is a model in Systems Biology, and which motivations stand behind model-
ing.

Section 2.3 discusses the two de facto standard description models used for biological
data exchange.

Section 2.4 focuses on the description of methodologies for modeling biological sys-
tems through a quantitative (Section 2.4.2), semi-quantitative (Section 2.4.2), and quali-
tative (Section 2.4.2) perspective.

2.1 The Cell

Cells are the fundamental units of the living organisms. They interact with the environ-
ment and other cells by processing and exchanging environmental information. The way
they interact is, essentially, carried out through biochemical reactions, exchanging the re-
sulting molecular products. Each cell is autonomous and self-sustaining, carrying out its
activities through its own set of instructions.

Essentially, cells can be divided into two main types, prokaryotic and eukaryotic cells,
depending if the nucleus is enclosed within a membrane. Cells are composed of a cyto-
plasm enclosed by a plasma membrane. In some cases, plasma membrane can be enclosed
within a cell wall, as observed in plants, fungi, and bacteria. The cytoplasm contains, in
turn, the cytosol and small membrane-enclosed organelles, such as mitochondria, in which
the biochemical processes of respiration and energy production occur. To better highlight
the different level of complexity, the prokaryotic and eukaryotic cells are shown in Fig-
ure 2.1 and Figure 2.2, respectively.
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Fig. 2.1. The prokaryotic cell structure. (source: http://www.shmoop.com/biology-cells/prokaryotic-
cells.html)

Fig. 2.2. The eukaryotic cell structure. (http://www.shmoop.com/biology-cells/all-eukaryotic-
cells.html)

Cells are characterized by a wide range of sizes, as well as being tissues and organ-
isms dependent. Despite these differences, cells store their information in the same way, in
the form of double-stranded molecules, called DNA (Deoxyribonucleic Acid), composed
of four types of chemical compounds, known as nucleotides. Nucleotides are identified
using four letters - A, T, C, G - called Adenine, Thymine, Cytosine, and Guanine, respec-
tively. The information is encoded in long linear sequences, in which these nucleotides are
combined. This information, to be used, must be transcribed, and lastly translated; these
processes are called transcription and translation, and they are involved into the RNAs
(Ribonucleic Acid) and Proteins production, respectively. The “instructions” to produce
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these molecules is associated to specific segments of DNA, called genes. Figure 2.3 shows
the information flow from DNA to protein.

Fig. 2.3. From DNA to protein.

RNA molecules can be seen as a way to bring the DNA information out of the nucleus,
in which it is stored. Protein molecules are involved in most of the cell activities. They
allow to manage the function, structure, and regulation of organs and tissues.

The whole genetic information, known as genome, is not completely assigned to the
proteins production. Special molecules, that act as regulatory elements, are produced as
well. Inside cells, not all genes are expressed at the same time. They are expressed ac-
cording to the cell necessities. Transcription and translation amount is regulated through
regulatory elements, used to control the transcription rate. Since a cell can be consid-
ered as a dynamic biochemical system, different incoming environmental inputs produce
different set of biochemical reactions, which can be interpreted as the cell answer to
the environment. Those reactions depend on parameters, such as the reactants concen-
tration, the chemical properties regulating the reaction speed, and they generate linear
reaction pathways in turn organized in concurrent non-linear complex networks (Gilbert
et al. [41]).
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Usually, these networks are classified according to their biological function, such as
signaling, gene regulatory and metabolic networks.

Signaling Networks

Any cell has to be sensible on incoming intracellular and extracellular changes (signals).
Signals participate in crucial functions, such as homeostasis, where the inner-body phys-
iological equilibrium must be controlled and preserved, as well as cell differentiation,
proliferation, apoptosis (cell death), and forth.

Basically, the signaling process starts through the binding of an extracellular signaling
molecule to a molecular receptor located on the cell surface. Signals can be of different
nature, in the form of elements/small molecules, such as ions, organic or inorganic com-
plexes, or physical changes, such as temperature, light, and pressure.

The bound receptor propagates the received message (the incoming signal) within
the cell through a messenger, triggering a series of biochemical reactions resulting in a
signaling cascade. Usually, several biochemical reactions can be mediated by a single sig-
nal. Finally, the cell gene expression represents the resulting signal transduction response,
since the gene regulation system directly depends on the signaling cascade. For a precise
set of signals, the complex of involved reactions, receptors, and final targets, are collected
in a single description model called signaling network, or signaling pathway. Recently,
studies (Gomperts et al. [44], Guo et al. [50]) shown that signaling networks can cross-
talk, resulting in more complex scenarios. Figure 2.4 which is an example of the most
studied signaling pathways, shows the MAPK signaling pathway. Mitogen-activated pro-
tein kinase (MAPK) signaling cascades plays a key role in transduction extracellular sig-
nals to cellular responses. MAPK pathway favorites cell activities, such as proliferation,
differentiation, growth, inflammatory responses and apoptosis in mammalian cells.

Gene Regulatory Networks

Gene expression is (time, tissue, and age)-dependent, resulting in control of all cell func-
tionalities. Some fundamental genes are maintained continuously expressed in all cells.
The largest part is turned on (expressed) or off (inactive) depending on specific cell con-
ditions.

The gene expression process is involved, most of the time, in proteins production. The
process starts transcribing the gene information into a Messenger RNA (mRNA), and con-
sequently, translates the resulting molecule into a protein. The first part of this process is
mediated by special proteins, called Transcription Factors (TFs), which act as activator or
inhibitor, resulting in control of the transcription rate. Transcription Factors are themself
the result of other genes transcription and translation. Those gene regulatory networks can
be highly complex (Lee et al. [75], Schlitt et al. [102], Karlebach et al. [63]).

Metabolic Networks

In cells, a specific set of biochemical reactions is involved in cell activities such as energy
production and cell growth; these reactions produce and degrade organic molecules, and
belong to Metabolism.

Metabolism can be classified into catabolic pathways, in which environmental im-
ported molecules are broken down in small ones for energy production, and anabolic
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Fig. 2.4. The MAPK signaling pathway.

pathways, in which molecules produced by catabolic pathways are used, through enzyme-
mediated reactions, as cell components building blocks. Gene regulation plays an im-
portant role for Metabolism, since it is directly involved into enzymes production (Orth
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et al. [92]). Metabolism can be further classified as primary and secondary. In primary
metabolism, processes involve fatty acids, carbohydrates, and other complexes, result-
ing in fundamental mechanism for the cell growth. In secondary metabolism, non-crucial
substances, known as metabolites, are produced.

2.2 Systems Biology

In biology, two fundamental paradigms are adopted to study living organisms, both
at different abstraction levels: the reductionist and holistic paradigm. The reductionist
paradigm aims at understanding life considering single components and interactions. The
holistic paradigm integrates components and interactions in such a way to form biological
systems (Complex Networks) to better reflect the dynamic behaviors of life.

Complex networks are essentially focused on the depiction, analysis, modeling and
simulation of complex systems characterized by several elements and connections. Com-
plex networks are not only limited to unveil special patterns of connectivity. They can be
used to explain the evolution of connectivity in a system, as well as its growth. Virtually,
complex networks allow representing any system composed of discrete elements.

In Systems Biology, the dynamic modeling of biological systems aims at describing
how such interactions, among defined elements, affect the time course of the elements
state and, more in general of the whole system, under specific conditions.

2.2.1 What is a model in Systems Biology?

In Systems Biology, models denote a way to represent life, often in an abstract and simpli-
fied fashion, such as graphs, diagrams, mathematical equations, chemical formulas, and
so forth. In general, models are not exclusively limited to represent known behaviors.
They can also include hypotheses to be verified.

The abstraction term indicates a mental approach in which it is possible to replace a
distinct set of elements by using a general concept, which describes them on the basis of
their common properties. A model describes the state of a biological system and how it
changes over time.

2.2.2 Why modeling in Systems Biology?

At the present time, the growing complexity of biological phenomena, driven by the avail-
ability of new and more accurate techniques and technologies, is increasing the require-
ment of new modeling tools to better interpret experimental data.
Molecular manipulation techniques, such as gene knockout, where a specific gene has
been made inoperative, revealed to biologists that analyzed phenomena can lead to a
greater complexity than they usually assume.
A validated dynamic model, which correctly captures experimentally observed behaviors,
allows better tracking those changes due to perturbations, in order to unveil dynamics that
regulate the system behavior. From this perspective, model development and analysis of
biological systems is recognized as a key requirement for integrating in vitro and in vivo
experimental data.
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2.3 Representation formats for Biological Systems

The Biological Pathway Exchange (BioPAX, Demir et al. [27]) and the Systems Biology
Markup Language (SBML, Hucka et al. [60]) represent the most used representation for-
mats to exchange biological processes.

BioPAX provides visualization and qualitative analysis of biological pathways, repre-
sented as a machine interpretable content for the Web.

In contrast, SBML focuses on (i) quantitative modeling (SBML Level 2 and Level 3)
of such biological processes (i.e. reactions from a quantitative perspective) and (ii) their
dynamic simulation. SBML is based on the eXtensible Markup Language (XML, Bray et
al. [14]), for its portability, human-readable content, and the wide acceptance as language
for computational biology.

Recently, SBML added a support to qualitative modeling (Chaouiya et al. [16])
through the qualitative (qual) extension package (SBML Level 3 Version 1 qual, com-
monly identified as SBML qual).

A valid alternative to describe biochemical systems is provided by rule-based lan-
guages, such as BioNetGen language (Faeder et al. [33]), named BNGL, and Kappa
(Danos and Laneve [24]).

Rule-based formalism allows investigating the mechanistic aspects at the level of
functional sites in biological molecules. Their use is especially involved to specify
protein-protein interactions and to describe the variation in protein concentration.

In this context, BioNetGen language and Kappa have been designed for modeling of
biochemical systems, such as mass-action kinetics models. They represent essentially the
same language, except for a few small differences. These languages provide a way to enu-
merate all potentially existing molecular species and reactions in a biochemical system,
which is characterized by a high combinatorial complexity. This is achieved by defining
only a set of reactive sites/motifs in large molecular complexes, the interactions and trans-
formations that can involve the sites themselves. As biological molecular interactions are
encoded via formalized rules, these languages require specialized simulators.

An important lacking component in such a languages it is the absence of a rich annota-
tion, unlike SBML (a reaction-based formalism). Metadata (semantic information) fulfills
an important role to allow an automatic model interpretation and processing. Moreover,
the process of translation of such rules into ODEs or reaction network is computationally
demanding or occasionally not achievable.

The thesis work is focused on the modeling of biological systems to unveil system
dynamics under perturbation, in which biological systems are treated as discrete event-
based models. The thesis approach does not request any additional detail, such as kinetics
rates, molecular motifs, and concentrations, except for the model provided through the
SBML description, a standard de facto description model for biological data exchange.
Additionally, the SBML annotation plays a key role for performing robustness/sensitivity
analysis based on drug knock out. As the thesis platform provides support for SBML
Level 3, it can be extended to include new functionalities. In the last few years, SBML
Level 3 extended its functionalities by including a new package, called multi (Multi-state
multicomponent species, interactions specific to particular domains and sites of proteins),
to model biochemical systems using a rule-based formalism.
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Biological Pathway Exchange (BioPAX)

BioPAX represents a standard format for exchanging pathways data, that can be described
at cellular and molecular level. BioPAX is based on a RDF/OWL language. The Resource
Description Framework (RDF, Lassila et al. [71]) is a family of World Wide Web Con-
sortium (W3C) specifications initially designed as a web-oriented metadata-based data
model. The Web Ontology Language (OWL, McGuinness et al. [82]) is a family of lan-
guages designed to represent complex knowledge about entities, group of entities, and so
forth.

BioPAX covers mainly families of biological pathways, such as gene regulatory net-
works, signaling and metabolic pathways and, more in general, molecular interactions.
BioPAX uses a class-based representation to group entities and their interactions. Classes
are designed for (i) pathways, (ii) interactions, and (iii) physical entities and genes. Fig-
ure 2.5 shows the BioPAX top level structure. Pathway node contains a set of interactions
describing, for example, Apoptosis and PI3K/AKT pathways. Interaction node represents
a basic relationship among a set of entities, such as reaction and catalysis. Finally, the
Physical Entity node represents simple entities, such as genes, proteins, transcription fac-
tors, and small molecules.

Fig. 2.5. The BioPAX top level structure.

PI3K/AKT pathway regulates different cell functionalities, such as cell surviving and
cell growth. Studies show that PI3K/AKT pathway components are often mutated in hu-
man cancers. PI3K/AKT pathway mediates receptors mainly involved in survival signals.

Listing 2.1 presents a code snippet collected from the BioPAX description model re-
garding the PI3K/AKT pathway. In such a description, class names start with an uppercase
character, while property terms start with a lowercase one. As example, the class Path-
way (bp:Pathway) consists of different property terms (elements), in which each one
describes a specific entity. An entity can be a:

• A reaction (<bp:pathwayComponent
rdf:resource="#BiochemicalReaction1" />).

• A comment (<bp:comment rdf:datatype="http://www.w3.org/2001
/XMLSchema#string">Signaling by AKT... </bp:comment>).
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• A small molecule (<bp:SmallMoleculeReference
rdf:ID="SmallMoleculeReference1">).

• A protein (<bp:ProteinReference rdf:ID="ProteinReference20">).
• etc...

Pathway components and their attributes are extensively and separately described, re-
sulting in a quite long description model, not easy to read without specific tools and lan-
guages. All BioPAX specifications and documentation are available through the following
URL: http://www.biopax.org.

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax

-ns#" xmlns:bp="http://www.biopax.org/release/biopax-
level3.owl#" xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#" xml:base=
"http://www.reactome.org/biopax/58/1257604#">

<owl:Ontology rdf:about="">
<owl:imports rdf:resource="http://www.biopax.org/release

/biopax-level3.owl" />
<rdfs:comment rdf:datatype="http://www.w3.org/2001/

XMLSchema#string">BioPAX pathway converted from "
PIP3 activates AKT signaling" in the Reactome
database.</rdfs:comment>

</owl:Ontology>
<bp:BiochemicalReaction rdf:ID="BiochemicalReaction1">
<bp:conversionDirection rdf:datatype="http://www.w3.org

/2001/XMLSchema#string">LEFT-TO-RIGHT</bp:
conversionDirection>

<bp:left rdf:resource="#SmallMolecule1" />
<bp:left rdf:resource="#SmallMolecule2" />
<bp:right rdf:resource="#SmallMolecule3" />
<bp:right rdf:resource="#SmallMolecule4" />
<bp:eCNumber rdf:datatype="http://www.w3.org/2001/

XMLSchema#string">2.7.1.153</bp:eCNumber>
<bp:displayName rdf:datatype="http://www.w3.org/2001/

XMLSchema#string">PI3K phosphorylates PIP2 to PIP3</
bp:displayName>

<bp:xref rdf:resource="#UnificationXref523" />
<bp:xref rdf:resource="#UnificationXref524" />
<bp:comment rdf:datatype="http://www.w3.org/2001/

XMLSchema#string">A number of different
extracellular signals converge on PI3K activation.
PI3K can be activated downstream of receptor
tyrosine kinases (RTKs) such as FGFR (Ong et al.
2001, Eswarakumar et al. 2005), KIT (Chian et al.
2001, Ronnstrand 2004, Reber et al. 2006), PDGF (
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Coughlin et al. 1989, Fantl et al. 1992, Heldin et
al. 1998), insulin receptor IGF1R (Hadari et al.
1992, Kooijman et al. 1995), and EGFR and ...</bp:
comment>

<bp:xref rdf:resource="#PublicationXref1" />
...
<bp:xref rdf:resource="#PublicationXref21" />
<bp:dataSource rdf:resource="#Provenance1" />
<bp:comment rdf:datatype="http://www.w3.org/2001/

XMLSchema#string">Authored: Orlic-Milacic, M,
2012-07-18</bp:comment>

...
<bp:comment rdf:datatype="http://www.w3.org/2001/

XMLSchema#string">Edited: Matthews, L, 2012-08-03</
bp:comment>

</bp:BiochemicalReaction>
<bp:ProteinReference rdf:ID="ProteinReference20">
<bp:organism rdf:resource="#BioSource1" />
<bp:name rdf:datatype="http://www.w3.org/2001/XMLSchema#

string">UniProt:Q9Y4H2 IRS2</bp:name>
<bp:name rdf:datatype="http://www.w3.org/2001/XMLSchema#

string">IRS2</bp:name>
<bp:xref rdf:resource="#UnificationXref129" />
<bp:comment rdf:datatype="http://www.w3.org/2001/

XMLSchema#string">FUNCTION May mediate the control
of various cellular processes by insulin.</bp:
comment>

</bp:ProteinReference>
...

</rdf:RDF>

Listing 2.1. The PI3K/AKT pathway represented through a BioPAX description.

Systems Biology Markup Language (SBML)

Systems Biology Markup Language Level 2 and Level 3

Any biochemical reaction can be broken down into several elements, which include rate
laws and their parameters, reactant and product species, reactions, and stoichiometries.
These elements can be characterized by compartments and different units to describe
quantities. Biochemical reactions networks, such asMichaelis–Menten kinetics (Equa-
tion 2.1), can be described through SBML models, in which one or more of these entities
lists are represented:

• Compartments.
• Species.
• Reactions.
• Parameters.
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• Units of definition.
• Rules.

Compartments. Labeled as listOfCompartments, a list of compartments represents a set
of containers, characterized by a finite volume, in which reactions take place. Cytoplasm
and Nucleus are simple examples of compartments.

Species. Labeled as listOfSpecies, a list of species represents a set of biological enti-
ties, such as proteins, genes, transcription factors, involved in a particular biological phe-
nomenon. Each biological entity is supplied with a set of attributes:

• id, a unique identifier for the specie.
• name, an optional name of type string.

Reactions. Labeled as listOfReactions, a list of reactions represents a set of statements, in
which transformations, transports or binding processes can alter one or more species. Rate
laws are associated with reactions, describing the way in which these ones take place.

Parameters. Labeled as listOfParameters, a list of parameters represents a set od sym-
bols, characterized by a global (at model level) and local scope (at reaction level), used to
describe quantities.

Unit of definitions. Labeled as listOfParameters, a list of unit definitions represents a set
of names used in the expression of quantities.

Rules. Labeled as listOfParameters, a list of rules represents a set of mathematical ex-
pressions, created from the reactions set. Rules are typically used to set parameters value,
or define constraints on quantities.

As an example, a complete model of the Michaelis–Menten kinetics in the follow,
one of the best-known models for enzyme kinetics, is shown through a SBML Level 2
description (Listing 2.2). The equation involves an enzyme E, binding to a substrate S, to
form a complex ES, which in turn releases a product P, regenerating the original enzyme.

E + S
kon


koff

ES → EP
kcat
→ E + P (2.1)

Constants such as kon, koff , and kcat denote the forward, reverse, and catalytic rate,
respectively.

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2/version5"

level="2" version="5">
<model name="EnzymaticReaction">
<listOfUnitDefinitions>
<unitDefinition id="per_second">
<listOfUnits>
<unit kind="second" exponent="-1"/>

</listOfUnits>
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</unitDefinition>
<unitDefinition id="litre_per_mole_per_second">
<listOfUnits>
<unit kind="mole" exponent="-1"/>
<unit kind="litre" exponent="1"/>
<unit kind="second" exponent="-1"/>

</listOfUnits>
</unitDefinition>

</listOfUnitDefinitions>
<listOfCompartments>
<compartment id="cytosol" size="1e-14"/>

</listOfCompartments>
<listOfSpecies>
<species compartment="cytosol" id="ES" initialAmount=

"0" name="ES"/>
<species compartment="cytosol" id="P" initialAmount="

0" name="P"/>
<species compartment="cytosol" id="S" initialAmount="

1e-20" name="S"/>
<species compartment="cytosol" id="E" initialAmount="

5e-21" name="E"/>
</listOfSpecies>
<listOfReactions>
<reaction id="veq">
<listOfReactants>
<speciesReference species="E"/>
<speciesReference species="S"/>

</listOfReactants>
<listOfProducts>
<speciesReference species="ES"/>

</listOfProducts>
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<ci>cytosol</ci>
<apply>
<minus/>
<apply>
<times/>
<ci>kon</ci>
<ci>E</ci>
<ci>S</ci>

</apply>
<apply>
<times/>
<ci>koff</ci>
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<ci>ES</ci>
</apply>

</apply>
</apply>

</math>
<listOfParameters>
<parameter id="kon" value="1000000" units="

litre_per_mole_per_second"/>
<parameter id="koff" value="0.2" units="

per_second"/>
</listOfParameters>

</kineticLaw>
</reaction>
<reaction id="vcat" reversible="false">
<listOfReactants>
<speciesReference species="ES"/>

</listOfReactants>
<listOfProducts>
<speciesReference species="E"/>
<speciesReference species="P"/>

</listOfProducts>
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<ci>cytosol</ci>
<ci>kcat</ci>
<ci>ES</ci>

</apply>
</math>
<listOfParameters>
<parameter id="kcat" value="0.1" units="

per_second"/>
</listOfParameters>

</kineticLaw>
</reaction>

</listOfReactions>
</model>

</sbml>

Listing 2.2. The Michaelis-Menten kinetics equation represented through a SBML Level 2
description.

Systems Biology Markup Language qual

Boolean Networks are described through SBML qual models, in which two main entity
lists are provided: Qualitative Species and Transitions.
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Qualitative Species A qualitative species list, labeled as qualitativeSpecies, represents a
set of biological entities, such as proteins, genes, transcription factors, involved in a par-
ticular biological phenomenon. Each biological entity is supplied with a set of attributes:

• level, an integer value representing the current entity state. In logic networks, the
level ∈ [0, 1].

• id, a unique identifier for the qualitative specie.
• name, an optional name of type string.
• initialLevel, an optional starting level defined for the qualitative specie. Default is 0.
• maxLevel, an optional upper bound value reachable by the level. In logic network, the

maxLevel = 1.

Transitions Transitions represent interactions among biological entities, in which output
biological entities are modified according to a set of conditions. Each transition is supplied
with a (i) list of Input entities, (ii) Output entities, and (iii) Function Terms representing
boolean rules.

Any entity belonging to the Input entities list represents a qualitative specie (reported
in qualitativeSpecies), supplied with specific attributes:

• qualitativeSpecies, the existing entity id, as reported into the qualitativeSpecies list.
• transitionEffect, describes how the input entity level can be affected by the transition.

Default is none, representing no changes in the level value.
• sign, represents the entity contribution to the transition. The contribution can be posi-

tive, negative, both or unknown.

An entity belonging to the Output entities list still represents a qualitative specie,
supplied with the same set of attributes seen above, except for the sign attribute. The
entity level is transition-susceptible, where conditional transfer functions manage how
the level value can be changed. Figure 2.6 shows a simple example of transition

Fig. 2.6. An example of transition.

which represents the following boolean rule:

CTL = IFNG ∧ ¬TGFB (2.2)

whereby CTL is active if and only if IFNG is active and TGFB is not active. Listing 2.3
reports the corresponding SBML qual description.
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<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core"

level="3" version="1" xmlns:qual="http://www.sbml.org/
sbml/level3/version1/qual/version1" qual:required="true
">

<model id="bio_network">
<listOfCompartments>
<compartment id="default" constant="true"/>

</listOfCompartments>
<qual:listOfQualitativeSpecies>
<qual:qualitativeSpecies qual:compartment="default"

qual:constant="false" qual:id="TGFB" qual:name="
TGFB" qual:maxLevel="1"/>

<qual:qualitativeSpecies qual:compartment="default"
qual:constant="false" qual:id="IFNG" qual:name="
IFNG" qual:maxLevel="1"/>

<qual:qualitativeSpecies qual:compartment="default"
qual:constant="false" qual:id="CTL" qual:name="CTL"
qual:maxLevel="1"/>

</qual:listOfQualitativeSpecies>
<qual:listOfTransitions>
<qual:transition qual:id="tr_CTL" qual:name="

Interactions targeting CTL">
<qual:listOfInputs>
<qual:input qual:qualitativeSpecies="TGFB" qual:

transitionEffect="none"/>
<qual:input qual:qualitativeSpecies="IFNG" qual:

transitionEffect="none"/>
</qual:listOfInputs>
<qual:listOfOutputs>
<qual:output qual:qualitativeSpecies="CTL" qual:

transitionEffect="assignmentLevel"/>
</qual:listOfOutputs>
<qual:listOfFunctionTerms>
<qual:functionTerm qual:resultLevel="1">
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<and/>
<apply>
<eq/>
<ci>IFNG</ci>
<cn type="integer">1</cn>

</apply>
<apply>
<eq/>
<ci>TGFB</ci>
<cn type="integer">0</cn>
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</apply>
</apply>

</math>
</qual:functionTerm>
<qual:defaultTerm qual:resultLevel="0"/>

</qual:listOfFunctionTerms>
</qual:transition>

</qual:listOfTransitions>
</model>

</sbml>

Listing 2.3. The previously transition represented through a SBML qual description.

Systems Biology Graphical Notation (SBGN)

Systems Biology Graphical Notation (SBGN, Le Novere et al. [74]) provides a way to
represent graphically any pathway. SBGN defines three orthogonal and complementary
types of diagrams used to describe different types of pathway, as reported below:

• Process Description (PD) diagram is designed for the description of processes (e.g.
, biochemical reactions) taking place in a biological system. PD is suitable for rep-
resenting precisely metabolic networks, in which all the reactants and reactions are
known. It allows to visualize chemical kinetic models.

• Entity Relationship (ER) diagram is designed for the description of all relations involv-
ing entities of a biological system. There is mainly one type of nodes, representing the
objects considered, linked by relationships. These ones are independent, avoiding the
problem of combinatorial explosion triggered by multi state entities. ER is suitable for
visualizing rule-based models.

• Activity Flow (AF) diagram is designed for the description of the activity flow in a
biological system. All nodes represent activities, linked by modulation arcs. AF is
used to represent signaling pathways or gene regulatory networks, where mechanistic
knowledge is missing or omitted. It is suitable for visualizing logical models.

Figure 2.7 shows all three different diagrams used to describe a specific biological
pathway.
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Fig. 2.7. Systems Biology Graphical Notation (SBGN) description diagrams. (a) A Pro-
cess Description diagram representing the synthesis of the neurotransmitter acetylcholine
in the synaptic button of a nerve terminal. (b) A Entity Relationship diagram repre-
senting the transduction, by calcium/calmodulin kinase II. (c) A Activity Flow diagram
representing the cascade of signals triggered by the epidermal growth factor (source:
http://www.nature.com/nbt/journal/v27/n8/fig tab/nbt.1558 F3.html).
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2.4 Models and Tools in Systems Biology

Systems modeling directly depends on the level of accuracy and details required, thus
allowing to describe systems in numerous ways, such as (i) phenomenological vs. phys-
ical, (ii) discrete vs. continuous, and (iii) deterministic vs. stochastic, or even combining
them in all possible combinations. Table 2.1 shows the most frequently used modeling
techniques, with few examples of their application as well.

Discrete Continuous

Deterministic
Interacting particles PDE

Molecular dynamics Diffusion

Stochastic
Random Events SDE

Population dynamics Reaction diffusion

Table 2.1. Most common modeling techniques: (i) continuous vs. discrete models, deterministic vs.
stochastic models.

As shown in Table 2.1, depending on the chosen modeling technique, different exist-
ing numerical and computational methods can be applied to model a given system.

Phenomenological vs. Physical Models. Phenomenological and physical modeling can
be distinguished according to the detail level required to model a given system. In a phe-
nomenological and physical model, an approximated description of the overall behavior is
counterposed to an accurate description of the mechanistic functioning. Phenomenolog-
ical modeling provides a way to analyze the system in response to known perturbations,
without requiring any specific information on how the system response is brought about.
In contrast, physical modeling, being strongly dependent on physic laws, it allows predict-
ing unseen system behaviors, thus providing new insights about how the system works.

Discrete vs. Continuous Models. In discrete models, system components are represented
through individual entities, in contrast with continuous models, in which quantities, such
as molecular concentration and temperature, are represented in space and time. Consider-
ing a discrete perspective, in molecular dynamics simulations physic characteristics such
as speed and positions are explicitly traced, and atoms are represented through a discrete
entity.

Continuous deterministic modeling allows describing a wide range of phenomena,
such as fluid dynamics, sound, heat, and forth. It is commonly based on partial differential
equations (PDEs).

By contrast, discrete deterministic modeling, based on particle systems or automata,
describes interacting finite entities over space and time, in agreement with deterministic
rules. Cells in tissues, organisms in an environment, or molecule atoms, are modeled as
interacting entities.

Stochastic vs. Deterministic Models. Biological Systems are characterized by a certain
level of randomness, essentially due to (i) unpredictable environmental influences, (ii)
fluctuations in molecular concentration, and (iii) noise in genes expression level. To deal
with those issues, natural phenomena can be better modeled though stochastic modeling.
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Basically, outputs are not entirely predetermined through the system state and its inputs,
since they also depend on random fluctuations.

In continuous stochastic modeling, quantities evolve in space and time depending on
certain probability densities. Generally formalized through stochastic differential equa-
tions (SDEs), they extend PDEs, in which stochastic terms can be used to model proba-
bilistic processes, such as (i) epidemics spreading, (ii) evolutionary theory, and (iii) neu-
ronal signal transduction.

In discrete stochastic modeling, probabilistic effects mostly refer to discrete random
events, which are associated with probability density functions. Some examples of their
application are population dynamics, and chemical reactions based on stochastic events.

2.4.1 Modeling Formalisms

Modeling formalisms can be classified into two main classes: mathematical models and
computational models. This section provides a short overview of mathematical models,
since the thesis work is focused on computational models, in particular on Boolean Net-
works.

Mathematical models

Mathematical models, such as those based on ordinary differential equations (ODE), can
be used to represent a wide range of natural phenomena. They can be seen as a composi-
tion of transfer functions, where variation in biological quantities is correlated with each
other. They model biological entities through quantitative relationships, such as molecular
concentrations. Mathematical models provide the most accurate physical and biological
representation for a given natural phenomenon. However, depending on the complexity
and size of the modeled system, mathematical models can require high computational
costs to be simulated.

Computational models

Computational procedures represent biological behavior through sequences of events. Un-
like mathematical models, computational models are based on state machines, where
qualitative states are related to each other. A state, typically, can be considered as the
system response to certain conditions according to specific time scales. Changing in the
state of a biological entity can be managed through a simple procedure that is sensible
about particular events.

Despite mathematical models, computational models are characterized by a qualita-
tive nature, allowing to deal with the absence of precise quantitative relationships between
entities. In such a way, they provide many ways to describe the same biological system,
even at different abstraction levels.

Even though the simplification of the biological reality, computational models are of-
ten able to reproduce the system behavior, even if they cannot describe (i) actual concen-
tration levels nor realistic time scales, (ii) explain and predict the outcome of biological
experiments that yield quantitative data. Although these limitations, given a biological
network consisting of input (e.g., receptors), intermediate, and output (e.g., transcription
factors) signals, they allow studying the input-output relationships through discrete simu-
lations (Samaga et al. [100]).
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In summary, since computational and mathematical models are based on different lan-
guages (Le et al. [73]), equations and computational procedures, respectively, they pro-
vide different kinds of insight, depending on which system aspects they are able to model.

In the last decade, different qualitative approaches have been successfully used to
extrapolate insights from biological systems. Those approaches fall in the so-called exe-
cutable cell biology (Fisher et al. [37]).

Many research efforts have been focused on redesigning well-established frameworks
for modeling computational systems to be “biology-compliant”—notably Process Al-
gebra (Ciocchetta and Hillston [20], Calder and Hillston [15]), Ruled-based Systems
(William et al. [58], Danos et al. [23], Talcott and Dill [106], Talcott [7]), Petri nets (Goss
and Peccoud [47], Heiner et al. [55] [54]), Statecharts (Harel et al. [51]), Hybrid Systems
(Bortolussi et al. [12]), and Boolean Networks (Kauffman et al. [64], Thomas et al. [107]).

Process Algebra. As biological systems can be seen as high reactive concurrent sys-
tems, in which biological entities interact with each other in a concurrent way, Process
Algebra can be used to formally describe those systems. It is well-suited for representing
several aspects of concurrent systems, such as interactions, communications, and pro-
cesses synchronizations. In general, Process Algebra acts as an intermediate model that
can be further translated into other computational models, such as continuous differential
equations (ODE).

Ruled-based Systems. Ruled-base modeling can be used to model variation in bio-
chemical quantities among interacting molecular species, since it is based on notations
close to chemical reactions representation. As an example, the basic enzymatic reaction,
where the enzyme E binds a substrate S and generates the product P, can be easily repre-
sented through the following rules:

E + S � ES (2.3)

ES → P (2.4)

Rule-based models can be translated into (i) quantitative models, which model vari-
ation of quantities over time, and (ii) qualitative models, which do not consider the time
factor, and focus only on the behavior investigation.

Petri Nets. Petri Nets have been initially designed for describing chemical processes,
and widely applied to model concurrent and distributed systems. In a Petri Net, two sets of
nodes are defined: (i) transitions, represented by a bar-based graphical notation (e.g., used
to model biochemical reactions), and (ii) places, represented by a circle-based graphical
notation (e.g., used to model biological entities, such as molecules). Nodes are combined
in a directed graph, where arrows represent the flow of a described rule. In a rule, a single
connection among a place and transition is established and vice versa. A black mark,
called token, is used to represent the data (e.g., molecular species). Token is consumed in
an input place and produced, through a transition, in a output place. Analyses can be done
in a quantitative, by modeling the tokens evolution over the time, and qualitative, through
the graph topology, perspective.
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Statecharts. Statecharts is a formalism to represent a biological system in a natural
fashion, in which a sequence of states describe its behavior. For example, transformations
in a molecule state, from an inactive to phosphorylated condition, can be represented
through a sequence of states, keeping the state assumed until the occurrence of specific
events. The approach provides a way to model biological systems as an event-driven con-
current multi-scale system and at different levels (organs, tissues, cells, molecules).

Boolean Networks. In Boolean Networks, an entity can assume either ON (active) or
OFF (inactive) value at a time, according to specific boolean rules (transfer functions).
Boolean Networks are mainly involved in robustness and sensitivity analysis, for exam-
ple, by perturbing a given system. Boolean Networks are characterized by a complexity
delimited among static network models and continuous dynamic models. Such a complex-
ity makes them a powerful and capable methodology to model wide biological networks.
Essentially, they represent a collection of individual elements and regulatory interactions
grouped all together in a rational network representation. In such a way, they can be used
to depict the system qualitative behavior in a temporal way, as well as investigate how
perturbations could affect its behavior.

A boolean rule maps a vector of k elements, in which each element can assume value
{0, 1}, to a binary output, as shown below:

TF : {0, 1}k → {0, 1} (2.5)

The boolean rule TF establishes how to calculate the output boolean value according
to a set of k inputs.

In summary, a Boolean Network model represents a set of boolean entities (vari-
ables) {φ1, φ2, . . . , φn} and a set of boolean rules {TF1, TF2, . . . , TFn}. Each φi vari-
able changes its own boolean value according to the value of other variables (its inputs)
mapped through the boolean rule TFi.

Section 2.4.2 reports mainly used tools based on logic models.

A distinctive property of formal state-based models is their amenability to automati-
cally derive properties from methods, using static analysis and model checking (Nielson
et al. [89], Dubrova et al. [30]). Static analysis is a common and potentially very sophisti-
cated automated technique for deriving properties of software programs without actually
running them, through analysis of the way in which model descriptions are put together
syntactically. Various kinds of static analysis can, for example, determine dependencies
between parts, find range limits on variables representing state elements, or infer proper-
ties of dynamically created data structures in computer memory.

Model checking (Baier and Katoen [4]) is a powerful algorithmic technique for auto-
matically proving certain properties of state-based models. Widely used in analysing hard-
ware and software systems, model checking algorithms are capable of handling (some)
system descriptions with very large sets of reachable states. In System Biology, the use
of model checking methodology is justified by the opportunity to qualitatively or quan-
titatively infer model properties for all possible executions, in contrast with numerical
simulation, where a single solution is available.
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At different physical scales, experimentalists pose disparate scientific questions and
make different observations; consequently, several disparate models can be explored. In
particular, the choice of what counts as a state is conditioned by the available experimental
techniques. The intrinsic complexity of biological systems is so high that all models result
in a partial description. Achieving an executable model may therefore come at the cost of
embodying unwarranted qualitative assumptions about system mechanisms.

In Fisher and Henzinger [38], design models through state machines requires to think
in terms of cause and effect rather than rates of change; in Priami [95], model using algo-
rithms forces to adopt a position on the causal mechanisms that generate trajectories. In
Kohl et al. [67], the model prediction accuracy is questioned, since the observed behav-
ior does not mean the described model mechanisms are responsible for the system under
study.

2.4.2 Application tools

Quantitative Modeling

CoPaSI. COPASI (COmplex PAthway SImulator, Hoops et al. [59]) combines standards
methodologies and widely used biological systems description, such as SBML (Hucka et
al. [60]) and CellML (Lloyd et al. [79]), for the simulation and analysis of biochemical
reaction networks. COPASI supports non-expert users by, for example, automatically con-
verting reaction equations to the appropriate mathematical formalism (ODEs or reaction
propensities). COPASI supports methodologies for the deterministic (integration of ordi-
nary differential equations (ODEs)) and stochastic (e.g., using the Gillespie’s algorithm
(Gillespie et al. [42]) simulation of reaction networks, the computation of steady states
and their stability, stoichiometric network analysis, e.g., computing elementary modes
(Schuster et al. [103]), sensitivity analysis (metabolic control analysis (Fell et al. [35],
Heinrich et al. [56]), optimization and parameter estimation.

CellDesigner. CellDesigner (Funahashi et al. [39]) is a modeling tool of gene-
regulatory and biochemical networks. CellDesigner supports users to easily create such
networks, using solidly defined and comprehensive graphical representation (SBGN).
CellDesigner is systems biology markup language (SBML) compliant, and has Sys-
tems Biology Workbench(SBW)-enabled software so that it can import/export SBML-
described documents and integrate with other SBW-enabled simulation/analysis software
packages. CellDesigner also supports simulation and parameter search, which is sup-
ported by integration with SBML ordinary differential equation (ODE) Solver, enabling
users to simulate through a sophisticated graphical user interface. SBML models can also
be browsed and modified with references to existing databases.

SQUAD. SQUAD (Di Cara et al. [28]) is a software for the dynamic simulation of sig-
naling networks using the standardized qualitative dynamical system approach. SQUAD
converts the network into a discrete dynamical system, and it uses a binary decision dia-
gram algorithm to identify all the steady states of the system. Then, the software creates
a continuous dynamical system and localizes its steady states which are located near the
steady states of the discrete system. The software permits to make simulations on the
continuous system, in the form of a set of ODEs, allowing for the modification of several
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parameters. SQUAD includes a framework for perturbing networks in a manner simi-
lar to what is performed in experimental laboratory protocols, for example by activating
receptors or knocking out molecular components.

Advantage and Limitation of Quantitative Models and Tools

Quantitative modeling describes the most accurate and strongly knowledge-dependent
methodologies, able to mimic precise system dynamics. However, considering the in-
crease in complexity and quantity of experimental data, develop accurate and trustworthy
quantitative models can become an arduous task. Experimental data quantity has to be
evaluated objectively and unknown model parameters have to be estimated.

Qualitative Modeling

BoolNet. BoolNet (Müssel et al. [87]) is an R package for the generation, simulation,
and analysis of synchronous, asynchronous, probabilistic and time-delayed networks. A
boolean network can be constructed from a time series of measurements. Networks can
also be created from a series of Boolean rules. BoolNet also features extensive tools for
analysis of boolean networks. Random networks can be generated to compared the prop-
erties of real biological networks to random networks. BoolNet can also find one or all
the attractors of a network and the transition states needed to reach the attractors. Beyond
simple steady states, BoolNet can find complex, and asynchronous attractors. The transi-
tion state analyses can be plotted visually. SBML networks can be imported and exported.
Only SBML qual description models are supported.

GINsim. GINsim (Gonzalez et al. [45]) is a Java software suite devoted for the qual-
itative modeling, analysis and simulation of genetic regulatory networks. The approach
relies on discrete mathematical and graph-theoretical concepts. GINsim encompasses an
intuitive graph editor, enabling the definition and the parameterization of a regulatory
graph, as well as a simulation engine to compute the corresponding qualitative dynamical
behavior. The approach for the modeling and analysis of regulatory networks relies in the
logical formalism previously developed by Thomas and colleagues [108], and Thomas et
al. [109]. It is based on the definitions of: (i) logical regulatory graphs to describe regula-
tory interactions between genes and (or via) their products, and (ii) state transition graphs
to represent the qualitative dynamical behavior associated with a given regulatory graph,
for given initial states.

CellNetAnalyzer. CellNetAnalyzer (Klamt et al. [66]) is a toolbox for MATLAB that
provides a comprehensive structural analysis of metabolic, signaling and regulatory net-
works in an interactive and visual manner. The particular strengths of CellNetAnalyzer
are methods for functional network analysis, i.e., for characterizing functional states, for
detecting functional dependencies, for identifying intervention strategies, or for giving
qualitative predictions on the effects of perturbations. CellNetAnalyzer extends its prede-
cessor FluxAnalyzer (originally developed for metabolic network and pathway analysis)
by a new modelling framework for examining signal-flow networks.

Genetic Network Analyzer. Genetic Network Analyzer (GNA, De Jong et al. [26])
is a computer tool for the qualitative simulation of genetic regulatory networks. GNA em-
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ploys piecewise-linear (PL) differential equation models that have been well studied in
mathematical biology (Glass and Kauffman [43], Snoussi [104], Mestl et al. [83]). While
abstracting from the precise molecular mechanisms involved, the PL models capture es-
sential aspects of gene regulation. Their simple mathematical form permits a qualitative
analysis of the dynamics of the genetic regulatory systems to be carried out. Instead of
numerical values for parameters and initial conditions, GNA asks the user to specify qual-
itative constraints on these values in the form of algebraic inequalities. Unlike precise nu-
merical values, these constraints can usually be inferred from the experimental literature.
GNA supports a qualitative simulation method that recasts the mathematical analysis of
PL models of genetic regulatory networks in a computational form (De Jong et al. [25]).

BooleanNet. BooleanNet (Albert et al. [2]) is a software toolbox that greatly facili-
tates the implementation and study of Boolean dynamic models of biological systems. It is
a tool that can simulate a Boolean model based on a very simple text based input describ-
ing the interactions and regulatory relationships in the system. The main distinguishing
feature compared to previous efforts is that it aims to provide support for modeling the
dynamic behavior of well defined biological sub-systems, rather than focusing on a larger
scale network inference, analysis or modeling based on high throughput data. Once the
rules are expressed the software can employ several simulation strategies: synchronous
iterations, stochastic updates or hybrid modeling via a system of piecewise linear dif-
ferential equations. More importantly the system allows the integration of non-boolean
mechanisms into the simulation thus expanding its applicability to a wider domain. Every
aspect of the simulation process may be customized: node states may be overridden at
different stages of the operation, updating rules may be altered, and differential equations
may be augmented or replaced.

Updating Policies

Updating policies can be synchronous or asynchronous. In a synchronous updating pol-
icy, all tools uniquely adopt a global updating strategy for nodes evaluation. In an asyn-
chronous updating policy, most of the tools rely on random updating strategies, such as
Random Order Asynchronous (ROA) (Harvey et al. [53]), General Asynchronous (GA)
(Harvey et al. [53], Chaves et al. [17], Saadatpour et al. [97]), Priority Class (Thomas et
al. [108], Fauré et al. [34]), and Ranked Asynchronous(RA) (Chaves et al. [17]).

• Random Order Asynchronous (ROA). Considering a network of N nodes. All
nodes are updated at the same time step, but in a random order, such that no node
is updated twice in the same time step. In the updating step, a random permutation
Q = Q1, . . . , QN is generated from the ordered set {1, . . . , N}. Then, the state of
node i, the Qith element of Q, at times t+ 1 is calculated as follows:

Xi(t+ 1) = Fi(X1(t1,i), . . . , XN (tN,i)) ∀ i = 1, .., N

where Fi is the boolean function that describes the state of node i at times t + 1, Xi

is the state of the node i at a specific time:

tj,i =

{
t if Qj > Qi

t+ 1 if Qj < Qi
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This means that if the input node j has been updated at the (t + 1)th time step, then
Xj(t + 1) should be used in the right hand side of the equation. If an input node has
not been updated (e.g., the last update was in the tth time step), then Xj(t) should be
used in the right hand side of the equation.

• General Asynchronous (GA) In this method, a randomly selected node is updated at
each time step. In the updating step, a random element of the ordered set {1, . . . , N},
i is selected. Then, the state of node i, at time t+ 1 is calculated as follows:

Xi(t+ 1) = Fi(X1(t), . . . , XN (t))

where Fi is the boolean function describing the state of node i at time t+1, Xj is the
state of a node at a given time step. Note that only node (i) is updated at a given time
(e.g., this could lead to update the same node multiple times in a row).

• Priority Class (PA) The nodes are updated either synchronously or asynchronously
(see GA) in a specific order. Each node belongs to one of the different priority classes
C1, C2, ..., Cp, with p ≤ N . Each class Ci has both a rank and a chosen updating
method (synchronous or asynchronous). In the updating class, nodes with the high-
est ranked priority class are updated first, and are updated with the updating method
chosen for the class. Classes of the same rank are updated independently and asyn-
chronously and classes of lower rank occur after the highest ranked classes.

• Ranked Asynchronous (RA) It shares the same approach seen for Priority Class.
However, a Ranked Asynchronous method adopts only the asynchronous updating
method.

Each asynchronous updating method listed above has some limitation. Methods such
as GA and ROA, can lead to the indiscriminate enumeration of all possible sequences
of the node updating, which includes many incompatible or unrealistic pathways. This
potentially leads to biologically implausible simulations of the qualitative networks. In
contrast, methods of the PA or RA class are more realistic but, on the other hand, they
rely on an a-priori knowledge (which is not always available) to categorize the network
nodes in classes.

Advantage and Limitation of Qualitative Models and Tools

Qualitative modeling describes the simplest and basic knowledge-dependent methodolo-
gies, able to reproduce reasonable system dynamic properties. Proposed by Kauffman [64]
and Thomas [107], the discrete logic-based dynamical models have been successfully
applied for modeling biological systems, such as the cell cycle (Fauré et al. [34]), the
gene regulatory system (Giacomantonio et al. [40]), and signaling networks (Schlatter et
al. [101], Saez et al. [98]).

In the context of discrete logic-based dynamical models, the attractors identification
and analysis, in which stable cycles of states are represented, is a dominant task. As at-
tractors comprise the states in which biological network dwells most of the time, they can
be often linked to phenotypes (Kauffman [65], Li et al. [77]).

Due to the increasing interest, different tools have been designed to investigate these
properties. However, they still show important limitations: (i) they do not support the
simulation complexity of large networks, (ii) the attractors analysis in asynchronous sim-
ulations is limited to networks of few tens of nodes and can not be exhaustive, (iii) they
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are designed and customized for specific network type only, such as signaling, gene reg-
ulatory, or metabolic networks, and, finally, (iv) the absence of automatism for network
drug-based perturbations limits their applicability to complex biological systems.

Last but not least, supported input description models, such as SBML, play an impor-
tant role on how a biological system can be better modeled. Listed tools mostly support
the SBML qual description model for modeling qualitative biological systems. Using
SBML qual models for logic networks limits the set of available interaction types to the
only activation and inhibition. In contrast, a SBML Level 2 reactions network model pro-
vides a more detailed description, including a wider set of interactions, such as stimuli
and catalysts. SBML Level 2 models provide a way to perform simulations closer to real
phenomena.

Semi-Quantitative Modeling

Odefy. Odefy (Krumsiek et al. [70]) is a MATLAB- and Octave-compatible toolbox for
the automated transformation of Boolean models into systems of ordinary differential
equations. Models can be created from sets of Boolean equations or graph representations
of Boolean networks. The Boolean models are transformed into systems of ordinary dif-
ferential equations by multivariate polynomial interpolation and optional application of
sigmoidal Hill functions. Our toolbox contains basic simulation and visualization func-
tionalities for both, the Boolean as well as the continuous models. For further analyses,
models can be exported to SQUAD, GNA, MATLAB script files, the SB toolbox, SBML
and R script files. Odefy contains a user-friendly graphical user interface for convenient
access to the simulation and exporting functionalities. We illustrate the validity of our
transformation approach as well as the usage and benefit of the Odefy toolbox for two
biological systems: a mutual inhibitory switch known from stem cell differentiation and a
regulatory network giving rise to a specific spatial expression pattern at the mid-hindbrain
boundary.

The Cell Collective. The Cell Collective (Helikar et al. [57]) is a platform that allows
the world-wide scientific community to create these models collectively. Its interface en-
ables users to build and use models without specifying any mathematical equations or
computer code - addressing one of the major hurdles with computational research. In ad-
dition, this platform allows scientists to simulate and analyze the models in real-time on
the web, including the ability to simulate loss/gain of function and test what-if scenarios
in real time.

Advantage and Limitation of Semi-Quantitative Models and Tools

Semi-quantitative modeling reports methodologies able to replicate system dynamics
with a good level of accuracy, even if kinetic data are unknown or incomplete. Semi-
Quantitative modeling combines qualitative and quantitative models, such as those based
on discrete states and ODEs, to capture the behavior of those systems that show a switch-
ing nature. An example is given by those systems that show a sigmoid trend, such as
Hill-based kinetics systems.
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Modeling and Simulation of Embedded Systems

This chapter describes general concepts regarding embedded systems, used to introduce
the context on which the thesis work is focused on.

Section 3.1 describes basic concepts regarding the Electronic Design Automation,
whose purpose is to design electronic products of all kinds.

Finally, Section 3.2 presents SystemC, one of the most popular embedded system mod-
eling description languages. It describes main SystemC components, especially for who
is not familiar with these concepts.

3.1 Electronic Design Automation

The design of embedded systems usually follows an approach based on different abstract
levels. In general, an engineer uses a top-down methodology, in which levels are described
from a high level (behavioral level) to a low one (geometrical level). Translations from an
abstract level to another is called synthesis, usually performed through automatic tools.
Depending on the complexity level of systems, they can even integrate a mixing of hard-
ware and software components, as System-on-Chip (SoC) and embedded systems. The
higher level of complexity requires a higher level of synthesis, usually called system level,
in which there is no difference between hardware and embedded systems. At this level, a
system describes interconnected components as independent subunits that communicate
with each other through messages, representing logic values. In this context, SystemC rep-
resents a suitable language for system level modeling. It relies on the flexibility of C++
and its typical features.

3.2 SystemC

In last years, SystemC has become a relevant alternative to the conventional hardware and
systems description languages VHDL and Verilog. In industry, SystemC is widely used,
being supported by several tools for synthesis and design automation.

SystemC represents a language to describe hardware and software components as parts
of the same system. In detail, SystemC is not properly a language, but rather a C++ class
library. It provides structures for modeling hardware components and their interactions,
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positioning SystemC as an equivalent hardware description language like VHDL and Ver-
ilog. All these languages share a common aspect: they have a simulation kernel that allows
to evaluate the system behavior through simulation. Despite VHDL and Verilog, SystemC
provides a richer set of port and signal types, as well as data types. This represents an
important aspect when different abstract levels must be achieved. A SystemC description
consists of:

• Modules. They represent the SystemC basic containers. Being hierarchical, a module
can contain other modules and processes.

• Processes. They provide a way to describe functionality.
• Ports. They allow modules to communicate with each other.
• Signals. They provide a way to exchange data.

Time Component

In SystemC, modeling of time represents one of the most important components, and it
is provided through the data type (a class) sc time. There is a minimum representable
amount of time (time resolution) and all times under this “resolution” are rounded to zero.
Time resolution restricts the maximum amount of simulated time, since time is repre-
sented using a 64-bit integer value. The sc time class provides a constructor that uses
the following form:

sc time(double, sc time unit)

where double represents the amount of time and sc time unit depicts an enu-
merated type (equivalent enum in C/C++). sc time unit provides attributes as fol-
lows:

• SC FS for femtosecond.
• SC PS for picosecond.
• SC NS for nanosecond.
• SC US for microsecond.
• SC MS for millisecond.
• SC SEC for second.

Listing 3.1 shows a C++ statement that creates a time1 instance of type sc time,
representing an amount of time equal to 60 seconds.

sc_time time1 = sc_time(60, SC_SEC);

Listing 3.1. A time1 instance of type sc time representing 60 seconds.

Module Component

Modules represent the SystemC fundamental building blocks. Essentially, a module con-
sists of concurrent processes, ports, channels, and internal data structures. Described
through the macro SC MODULE, they extend sc module, a base class for all SystemC
modules. Each module constructor, declared through the macro SC CTOR, requires a
mandatory argument. This argument represents the name that has to be associated with
the generated instance. Listing 3.2 shows a simple “toy” module template, in which In-
stanceT1 represents the name associated to the instance.
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SC_MODULE(ToyModule) {
/*
Internal data structures, processes, ports, ...

*/
SC_CTOR(ToyModule){
/*
Processes declaration, ...

*/
}

};

// ToyModule instace declaration
ToyModule instanceToy1("InstanceT1");

Listing 3.2. A “toy” module template supplied with the relative constructor.

Sometimes it is necessary pass more parameters to the constructor. In this case, con-
structors must be declared using the SC HAS PROCESS macro. Listing 3.3 extends the
previous template using the SC HAS PROCESS macro and passing two parameters (inte-
ger type).

SC_MODULE(ToyModule) {
/*
Internal data structures, processes, ports, ...

*/
SC_HAS_PROCESS(ToyModule);
ToyModule(sc_module_name name, int parameter1, int

parameter2) : sc_module(name) {
/*
Processes declaration, ...

*/
}

};

// ToyModule instace declaration
ToyModule instanceToy1("InstanceT1", 2, 3);

Listing 3.3. A “toy” module template supplied with the relative constructor.

Processes

In SystemC, functionality is carried out through processes. SystemC module member func-
tions, processes are used to provide a mechanism to simulate concurrency. Declared inside
the constructor, processes use two macros to be defined: SC METHOD and SC THREAD.
Processes declared through each macro differ as follows:

• SC METHOD. A SC METHOD process can not contain any wait statement. It executes
its task up to the end, without any interruption.
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• SC THREAD. Run only once at the beginning of a simulation, a SC THREAD process
can suspend its activity through the statement wait, letting another process to con-
tinue the simulation. For example, a given thread suspends itself for 10 seconds, as
shown below:

wait(10, SC SEC);

SC METHOD and SC THREAD processes can be triggered by specific set of events,
making these processes ready to be executed. A sensitivity list provides a way to set
processes able to be triggered through a set of events (Listing 3.4).

// A SC_METHOD sensibles to two events
SC_METHOD(MyMethod);
sensitive << event1 << event2;

Listing 3.4. Sensitivity list declaration.

Listing 3.5 reports the syntax how to use an event ev (sc event type):

// Event declaration
sc_event ev;

// Event immediately triggered through the "notify"
function

ev.notify();

// Event triggered after 10 seconds through the "notify"
function

ev.notify(10, SC_SEC);

// Event removed
ev.cancel();

// A SC_THREAD process waits until the ev event is
triggered , instead of use a timed waiting

wait(ev);

Listing 3.5. How to declare, trigger, cancel and wait an event.

Only waits and events notification push forward the simulated time.

Channels and Ports

SystemC provides different type of channels. sc signal represents one of the basic
channels, and any change in the channel value is effectively available after the end of a
delta cycle, in order to achieve concurrency. Delta cycle does not represent a clock cycle
and no time is advanced. Delta cycle is used to simulate new updates and event, triggered
processes to be simulated from current execution phase. SystemC provides the following
syntax to declare a signal:
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sc signal<T> signal name;

where T represents the signal data type. Listing 3.6 reports the signal declaration,
writing, and reading.

// Declares a signal sig1 of type integer
sc_signal<int> sig1;

// Writes the integer 2 on sig1
sig1.write(2);

/*
Moves forward the simulation of a delta cycle in order to
update the sig1 value with the integer 2

*/
wait(SC_ZERO_TIME);

// Reads the sig1 value
int signal_value = sig1.read();

Listing 3.6. Signal declaration, writing, and reading.

Channels provide the way how modules can exchange data. Modules use ports in order
to communicate with each other. SystemC provides ports, which act as inputs and outputs
of a module. sc in<T> and sc out<T> are the basic most important ports available
in SystemC, where T represents the port data type. Basically, a port can be interpreted
as a pointer to a channel. This is achieved by connecting a port to a channel through an
interface.
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BIODEA: An Electronic Design Automation-based
Framework

This chapter presents the BIODEA framework, a first generalizable approach for modeling
and simulation of biological systems through Electronic Design Automation techniques
and languages.

Section 4.1 discusses how biological entities are modeled and then translated in a stan-
dalone SystemC simulator. Section 4.2 is devoted to the description of Assertion-based
Verification (ABV) techniques applied to investigate behaviors of interest through system
parameters estimation. Finally, Section 4.3 presents how faults injection has been applied
to alter the biological system behavior, in order to investigate the system robustness/sen-
sitivity under perturbation.

4.1 Modeling of Biological Entities in SystemC

The BIODEA framework relies on two main concepts: (i) Biological Boolean Networks
modeling and (ii) Finite State Machines (FSMs).

FSMs provide a way to formally represent the biological entity logic behavior in terms
of (i) states (e.g., inactive or active), (ii) transitions between states, and (iii) guard condi-
tions (i.e., boolean conditions).

Figure 4.1 shows the FSM template designed to model the biological entity behavior.
A biological entity changes its state (i.e., a transition occurs) when the guard condition
is evaluated to be true. The condition may be set on a particular reaction event (e.g., ac-
tivation via phosphorylation, steric binding, auto-phosphorylation, cofactor synthesis or
inhibition via phosphatase) generated by any upstream biological entity or on any environ-
ment status. Such a transition occurs after a delay time, which represents the time spent by
a biological entity to encounter its targets. The parameter t represents the time elapsed,
which is constantly updated during simulation, while lifetime represents the maximum
time from the activation instant in which the biological entity carries out its biological
function.

The FSM template includes (i) two sets of input data that can affect the biological
entity behavior and its output, and (ii) one set of generated output:

• Upstream inputs (US): They are inputs whose values are generated during simula-
tion and depend on topological interactions that occur in upstream biological entities.
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Fig. 4.1. The FSM template for the biological entity modeling.

Each biological entity changes its state value from inactive to active and vice versa,
according to a guard condition called Transfer Function (TF). A Transfer Function is
used to evaluate the current biological entity state value, depending on the values of
its input signals (US). Some examples are the activation via phosphorylation, steric
binding, cofactor synthesis, or inhibition.

• Parameters (P ): They are inputs whose values depend on the environment character-
istics and status, which are unknown at modeling time. Some examples are the delay
time , the biological entity lifetime, the downstream biological entities concentrations
which affect the delay time, the biological entity initial state, and so forth. An ex-
pired lifetime will force the biological entity state to be false, changing the entity state
from active to inactive. For each parameter, the simulation platform generates differ-
ent values with the aim of observing how such values affect the system dynamics (i.e.,
parametrization).

• Downstream outputs (DS): They are outputs whose values are calculated at simulation
time and depend on the role of the biological entity toward downstream biological
entities.

Each biological entity is implemented through a SystemC module, as C++ template
class, with (i) upstream inputs and downstream outputs modeled as SystemC ports, and (ii)
parameters implemented as simple state variables. The biological entity behavior repre-
sented by FSM, as shown in Figure 4.1, is implemented through a SystemC process, which
is sensitive to any event on the input signals. An activation/inhibition from an upstream bi-
ological entity is represented by an input (boolean) signal set to true. Being event-driven,
the process wakes up and updates both the internal state and the output signals whenever
a new event on inputs occurs. Each network node is implemented as a SystemC module
through processes. The element modules are finally connected and simulated at system
level.
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In the simplest version of the SystemC module, the C++ template class representing
the biological entity is characterized by four parameters:

• A, the number of input activation signals.
• I, the number of input inhibition signals.
• O, the number of output signals.
• F, the biological entity transfer function; this parameter has type function, an enu-

meration containing all nodes transfer functions.

The SystemC module interface consists of:

• inputActivations, a sc vector containing A ports of type sc in< bool >.
• inputInhibitions, a sc vector containing I ports of type sc in< bool >.
• outputs, a sc vector containing O ports of type sc out< bool >.

Finally, the biological entity state is managed through a sc signal< bool >.
Starting with the simplest version of the SystemC module, additional versions have

been developed for qualitative and semi-quantitative simulations, each one characterized
by an increasing level of modeling details. Listing 4.1 shows the C++ template declaration
of the reaction reported in Figure 4.2.

Fig. 4.2. An example of biological reaction, in which IFNG acts as activator for CTL and TGFB
acts as inhibitor for CTL. R1 represents the reaction process.

// IFGN declaration
entities[0] = new entity< 1, 0, 1, sIFGN > ("sIFGN");
entities[0]->in_activations[0](sig_sIFGN_sIFGN);
entities[0]->outputs[0](sig_sIFGN_pR1);

// TGFB declaration
entities[1] = new entity< 1, 0, 1, sTGFB > ("sTGFB");
entities[1]->in_activations[0](sig_sTGFB_sTGFB);
entities[1]->outputs[0](sig_sTGFB_pR1);
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// R1 declaration
entities[2] = new entity< 1, 1, 1, sTGFB > ("sTGFB");
entities[2]->in_activations[0](sig_sIFGN_pR1);
entities[2]->in_inhibitions[0](sig_sTGFB_pR1);
entities[2]->outputs[0](sig_pR1_sCTL);

// CTL declaration
entities[3] = new entity< 1, 0, 0, sCTL > ("sCTL");
entities[3]->in_activations[0](sig_pR1_sCTL);

Listing 4.1. An example of C++ template declaration regarding the reaction reported in Figure 4.2.

BIODEA provides a set of models classified on their own features, allowing to deal
with problems at different levels of complexity. Below, models are listed from the simplest
to the most complex.

The FSM model, which is shared by each network entity, allows the corresponding
SystemC implementation to be automatically generated from an SBML description. The
automatic SBML-SystemC translation is achieved through a front-end parser, as described
in Section 5.1.

4.2 Network Parametrization through Assertion-based Verification

In EDA, functional verification based on assertions represents one of the main applied
and investigated techniques that combines dynamic and static verification (Bombieri et
al. [10]). Assertions are a formal description of what behavior is expected during the
model simulation. It allows bugs detection and it drives the test pattern generation (Boulé
et al. [13]).

BIODEA applies simulation-based ABV, by which assertions are defined in PSL, au-
tomatically synthesized into checkers through the IBM FoCs synthesizer (Abarbanel et
al. [1]), and plugged to the SystemC model (Bombieri et al. [10]). The checkers monitor
observable signals of the model under verification during simulation and raise a failure
signal when a failure is detected. In the context of signaling networks, they aim at moni-
toring the biological entity states, whose temporal activity is a key to understand crucial
biological properties such as (i) steady states and (ii) oscillations (Samaga et al. [99]).

Figure 4.3 shows an example of state dynamics of a hypothetical biological entity to
be observed and for which an assertion has be defined. The assertion describes a periodic
oscillations activity (positive edge and negative edge are constant in every active and
inactive state, respectively, at each oscillation) and that considers a percentage of natural
tolerance (δ) in such a periodicity as follows:

define pos_edge:=(ta-delta) <= t & t <= (ta+delta);

define neg_edge:=(ti-delta)<= t & t <= (ti+delta);

assert (G((state=ACT)->X((state=INACT)&(pos_edge=true))) &
G((state=INACT)->X((state=ACT)&(neg_edge=true))));

where ta and ti are temporal counters initialized at the first oscillation, and that hold the time
elapsed from the first state transition (inactive → active and active → inctive, respectively).
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Fig. 4.3. The periodic oscillation state of a hypothetical biological entity as example of complex
attractor.

They are used to measure the positive and negative edge values, respectively. The parameter t is the
counter set, from the second oscillation on, at each state transition, and it is used to measure the
period of subsequent oscillations to be compared with the first ones.

The assertion-based verification is applied for the parametrization phase, as shown in Fig-
ure 1.1, which aims at identifying the parameter settings, as described in Section 4.1, that lead the
network to satisfy the property described in the assertions. The biological entity is connected to
an automatic test pattern generator (ATPG), which generates the parameter values. The set of all
parameter values, for all biological entities, represents a configuration. The ATPG generates a con-
figuration and runs (i.e., executes) a dynamic simulation of the network behavior for such a set of
input values for a given simulation time. Then, the ATPG generates a new different configuration
for a new simulation. The run ends when all the possible configurations have been simulated and,
as a result, it generates a set of useful configurations, i.e., all and only configurations that lead the
network to satisfy the given properties.

The useful configurations are then applied to analyses the network robustness and sensitivity,
as described in the next section.

4.3 Robustness/Sensitivity Analysis through Assertion-based
Verification and Mutation Analysis

In Systems Biology, robustness and sensitivity analysis represents a systematic evaluation of the
network response, whenever compared with failures. Such an analysis goal is twofold aiming at (i)
understanding the network behaviors, complexity, and its response to internal/external failures, and
(ii) validating the simulation model on in-vitro/in-vivo experimental results.

Generally, robustness represents a predominant system behavior under perturbations or uncer-
tainty conditions. Biological systems robustness, such as stability, encompasses a relative, not an
absolute, property since no system can maintain stability for all its functions under perturbation.
Considering simple systems, like the BIODEA case study described in Section 6.1, robustness is
often equivalent to a dynamical regime. Genetic oscillators investigation mainly focused on the per-
sistence of a regular periodic solution, does not preclude quantitative changes, in oscillation period
or amplitude, to occur (Barkai et al. [5]). BIODEA provides a way to specify (i) which characteristic
behavior or property should remain unchanged under perturbation through assertion-based verifi-
cation, and (ii) for which type of perturbations, in a mutation model, this invariance property is
held.
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Fig. 4.4. The FSM Mutation Model representation and its available mutations.

Figure 4.4 shows an overview of the designed mutation model, which relies on fault injection in
the FSM model [19] for the network biological entities. Each fault represents the real effects (muta-
tions) of the biological entity behavior due to natural diseases, such as gene transcription alterations,
cellular environmental fluctuations, and so forth. For the sake of clarity, the figure shows how the
In this first stage, the mutation model implements only some of the well-known biological entities
alterations, such as (i) total inactivity, (ii) alternation in the transcription function, (iii) variations in
delay time and (iv) lifetime.

Figure 4.5 shows an overview of the BIODEA robustness/sensitivity analysis flow.
Starting with (i) all useful generated configurations during the phase 1 and (ii) the observed

properties, BIODEA uses this acquired knowledge as stimuli for the Golden Model Network, lack-
ing in mutations, and the mutated model, in which a single mutation is activated at a time. The
assertion-based verification (ABV) results are then matched to identify which mutation has gener-
ated the highest result divergence compared with the golden model. The divergence is measured by
comparing the number of configurations that still lead to oscillations and how much the number of
them is preserved. The generated ranking, representing the mutation sensitivity results, is analyzed
to identify, among the most sensitive mutations, which one has to be experimentally reproduced
(in-vitro or in-vivo).

The flow continues to analyze mutations, discriminating sensitivity results experimentally con-
firmed from those that do not fully represent the signaling network and, as a consequence, that have
to be additionally refined.

As shown in Figure 4.5, the BIODEA robustness/sensitivity analysis flow is essentially divided
into two main sub flows:

• an automatic flow, composed of (i) an extension version of Lisherness et al. [78] for the mutation
injection through SystemC code, and (ii) an adapted version of Bombieri et al. [9] for automatic
assertion-based verification and mutation sensitivity ranking generation.

• an in-vitro and in-vivo-based experimental flow, as highlighted in Figure 4.5.
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Fig. 4.5. The BIODEA robustness/sensitivity analysis flow.

4.4 Updating Policies

BIODEA relies on (i) a Deterministic Asynchronous (DA) updating method (Chaves et al. [18],
Saadatpour et al. [97]) for asynchronous simulations, in which each node has a pre-selected delay
time τi, (ii) a full support for SBML Level 2 and SBML qual description models, (iii) a discrete
event-based framework developed in SystemC, for efficient and accurate simulations. Recent studies
(Monk [84], Novák et al. [91]) have shown that the time-delayed approaches can play an important
role in Biological Systems. For example, in gene regulatory networks, a changing in protein levels
can be time-delayed dependent, as biochemical reactions can occur from milliseconds up to few
seconds. Figure 4.6 shows an example of network used to better clarify how BIODEA uses the
time-delayed approach in synchronous and asynchronous updating policies.

Fig. 4.6. An example of network. Node A activates node B, C and D. Node B and C activate together
node E. Node D activates node F.

Depending on the required level of details, BIODEA provides (i) different temporal informa-
tion, (ii) resolution (molecular concentration), and (iii) two synchronous and asynchronous updating
policies:
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• In a synchronous updating policy, the state value x of the i-th biological entity, called node,
at time t + 1, is the resulting evaluation of the logical function associated to its input nodes
i1, . . . , in at time t, as follow:

xt+1
i = f(xti1 , . . . , x

t
in) (4.1)

All nodes states are evaluated and updated simultaneously, based on the assumption that all
biological processes have the same delay time.

• In a asynchronous updating policy, the state value x of the i-th node is evaluated whenever an
event, a change in the signal value, occurs in one or more of its inputs.

Figure 4.7 shows how entities are activated according to a specific updating policy. Synchronous
updating policy uses a unique delay time equal for all outputs of all entities.

• Step 1. At time t = 0, node A gets activated.
• Step 2. At time t = 1, nodes B, C and D get activated.
• Step 3. At time t = 2, node A E and F get activated.

In contrast, the asynchronous updating policy assigns a specific delay time to each output
(source → target) of each entity. At each step, a specific node gets activated, depending on
the specific delay time (temporal annotation). Assuming a specific delay time for each entity

Given the following list of delay times:

• delay timeA→B = 1
• delay timeA→C = 3
• delay timeA→D = 5
• delay timeB→E = 8
• delay timeC→E = 8
• delay timeD→F = 2

Nodes are chronologically evaluated as follows:

• Step 1. At time t = 0 node A gets activated.
• Step 2. At time t = 1 node B gets activated.
• Step 3. At time t = 3 node C gets activated.
• Step 4. At time t = 5 node D gets activated.
• Step 5. At time t = 7 node F gets activated.
• Step 6. At time t = 9 node E receives an activation signal from node B. However, node E needs

an addition activation signal (from C) to be activated.
• Step 7. At time t = 11 node E gets finally activated.

4.5 Abstract Levels

BIODEA provides a set of models distinguished by (i) the available features, (ii) the supported
updating policy, and (iii) the qualitative or semi-quantitative modeling approach. The Model v1 rep-
resents the simplest one, and successive models extend its basic functionalities, in order to increase
the modeling accuracy.
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Fig. 4.7. BIODEA: Synchronous vs. Asynchronous Updating Policy.

Model v1

Model v1 represents the simplest representation of a model. In this model, features such as delay
time and lifetime are not provided, while the FSM is implemented using a single SC METHODwhich
is sensible to a global clock. Whenever the SC METHOD is woken up, it evaluates its transfer func-
tion F, changing the node state value according to the evaluation result, resulting in the activation
or deactivation of the biological entity. As a consequence, all entity outputs, defined by the Ds set,
are activated or deactivated at the same time, accordingly to the node state value. The model aims at
investigating, by using a zero knowledge-based approach, simple biological properties, such as (i)
stable states and (ii) simple complex attractors, whenever feedback loops are available within the
modeled network.

Model v2

Model v2 introduces the concept of delay time. Still relying on a synchronous updating policy, the
model groups biological entities in classes, adding to each one a different delay time. As a results,
biological entities belonging to the same class have the same delay time. Biologically speaking, this
differentiation can be interpreted as different timings in the reactions execution, since biological
processes take different times to be carried out.

Model v3, Model v4, and Model v5

In contrast with previous models, in Model v3, Model v4 and Model v5, biological entities are no
longer sensible to a global clock. Rather, they change their state value according to events that occur
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on input signals. Biological entities use a specific delay time for each one of their inputs through
(i) a user specified value, (ii) a random value chosen within a reasonable range, and (iii) a value
exhaustively chosen within a reasonable range, respectively provided by Model v3, Model v4 and
Model v5. To keep down the computational cost of handling several events triggered at different
times, the SystemC module does not use the SC THREAD, subjected to an overheads in term of
computational costs, but relies on two SC METHOD. A first SC METHOD, called stateMethod,
is devoted to manage incoming signals defined by the Us set, while a second SC METHOD, called
delayMethod, is devoted to manage the biological entity state and all outputEvents, one
for each output signal. In this way, in an activated biological entity, the stateMethod stores the
current activation timestamp, and it calls the function notify on each outputEvent. Events
will trigger the activation of downstream biological entities. Any deactivation of the biological
entity results in a suppression of all events (outputEvents) associated with its outputs. As a
result of the activation, delayMethod verifies, for each output i, whether the current timestamp
results equal to lastActivationTime + delayTime[i]; if so, the corresponding output
signal will be activated.

Model v6

Model v6 introduces the concept of lifetime, representing the maximum amount of time after acti-
vation, in which a biological entity carries out its own biological function. Introducing the lifetime
required an additional SC METHOD to be managed, called lifetimeMethod. This method is sen-
sible on an event, lifetimeEndEvent, that is triggered after the biological entity activation. The
lifetimeMethod is in charge to manage the biological entity lifetime; as direct consequence,
an expired lifetime, results in the deactivation of (i) all outputs, and (ii) the biological entity itself.
Lifetime represents an important feature, allowing complex attractors observation, even in absence
of feedback loops. Biological speaking, the lifetime can be considered as the amount of time before
molecular degradation.

Model v7

Model v7 provides the same features seen with Model v6; however, it differs in how it selects the
output signals to be activated. In this model, each biological entity activates only one of its outputs
at a time, choosing a delay time and an output to be activated in a stochastic fashion. The stochastic
approach tries to take into account molecular concentrations, used to weigh provabilities, in order
to give a first simple quantitative insight.

Model v8

Model v8 represents the closest way to model reactions network. It expands the amount of available
interactions such as activation and inhibition, by adding the cofactor synthesis. In this new type
of interaction, any activation of downstream outputs will not be affected by any further upstream
deactivation, allowing the outputs to be deactivated only by the lifetime expiration. Biologically
speaking, biochemical reactions contribute not only to form molecular complexes (molecular bind-
ing), but also to create new biological entities (synthesis process), that are free to move around the
cell space.

Model v9

As previously described, in boolean networks, the entity state can assume the active or inactive value
according to its transfer function, without considering any molecular concentration. This simply
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the natural phenomenon allowing the reproduction of qualitative behaviors, without requiring high
computational costs. Antithetically, in a semi-quantitative model, different instances of a biological
entity can establish (individually) concurrent interactions at a time, mimicking a behavior more
close to the the real one. Unlike boolean models, where a “single” instance of a biological entity
is available to establish potential interactions at a time , in a semi-quantitative model, it is possible
to observe concurrency among molecular sets of biological entities. In Model v9, the molecular
concentration of a biological entity is split into its downstream targets, according to a probability
distribution, in which targets molecular concentrations are taken into account. This model provides a
semi-quantitative parametric approach, adopting most of the features shown by previously models.
Through the parameter K, Model v9 sets the minimum packet size, representing the “minimum
amount” of molecules of the same entity that can participate to any interaction. With a deeper level
of detail required, a different SystemC interface is provided, if compared with the one developed for
the qualitative modeling. In particular, the C++ template class is characterized by:

• I, the number of input signals, comprehending activation and inhibition signals.
• O, the number of output signals.
• F, the biological entity transfer function; this parameter has type function, an enumeration

containing all nodes transfer functions.

The SystemC module interface is constituted by:

• inputActivations, I ports of type sc in< signalType >.
• inputDeactivation, I ports of type sc in< signalType >.
• inputLinkInfo, I ports of type sc in< signalInfo >.
• outputActivation, O ports of type sc out< signalType >.
• outputDeactivation, O ports of type sc out< signalType >.
• outputLinkInfo, O ports of type sc out< signalType >.

where (i) ports are of type sc vector, (ii) signalType and signalInfo represent cus-
tom type of SystemC signals.

The signalType represents an array of messages, with type messageType, in which each
message is characterized by the following parameters:

• id, a unique progressive integer number designed to identify a specific message, chosen by the
sender (upstream entity).

• size, the amount of molecules, as a multiple of K, within a packet, that can be activated/inhibited.
• isPartial, a boolean flag, available for inhibition signals, used to establish if only a subset of

packets, associated to a message id, are inhibited.

The signalInfo contains the number of the downstream entity inactive molecules and the
interaction type, as shown below:

• ACTIVATION, steric and cofactor binding, phosphorylation.
• INHIBITION.
• SYNTHESIS.

Starting from a higher complexity, Model v9 relies on different methods to accomplish its tasks,
as described below.

The activation signal received method

Replicated for each model input signal, the method is activated whenever a changing in value occurs
on the corresponding inputActivation signal. All messages generated by the upstream entity
are stored into an activation messages queue; as direct consequence, the method notifies the received
messages, by activating the activation scheduler method. The queue is used whenever all messages
can not be processed at the same time step, for example, when all molecules of the biological entity
are activated.
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The deactivation signal received method

Based on the same logics described in Section 4.5, the method, however, is sensible to the corre-
sponding inputDeactivation signal, and manages the activation of the deactivation scheduler
method.

The activation scheduler method

Based on the activation messages queue and the entity transfer function F, the method decides
which downstream target has to be activated. It decides how to split its molecules amount among
its downstream targets using a random distribution, weighted on their current concentration (mem-
orized in outputLinkInfo). For each split of activated molecules, a structure is stored with a
set of information, as follows:

• id, a unique identifier number used by sent messages to the downstream target.
• size, the amount of molecules within the packet, as multiple of K.
• activationTime, the activation timestamp.
• activators, a list of downstream targets activated by the current split, according to the transfer

function F.
• target, the downstream target that will receive the current split through a message.
• delayEvent, a scheduled event, associated to a delay time value, used to notify the activation of

the delay time output method.
• lifetimeEvent, a scheduled event, associated to a lifetime value, used to notify the activation of

the lifetime ended method.
• state, it establishes if the split is active, inhibited, or must be removed.

Other tasks accomplished by the method are: (i) updating the number of the upstream entity
inactive molecules, through the inputLinkInfo, and (ii) checking whenever a message of IN-
HIBITION type requires the deactivation of active molecules, through the activation of the deacti-
vation scheduler method.

The deactivation scheduler method

As introduced in Section 4.5, a split can be also deactivated, according to specific conditions:

• receiving a deactivation message from any of its upstream entities.
• receiving an inhibition message from the activation scheduler method.
• receiving a lifetime expiration message from the lifetime ended method.

As a consequence, any received deactivation message results in the deletion of the correspond-
ing splits, setting all molecules within those splits back to the inactive state. Lastly, the method sends
(i) deactivation messages, through the outputDeactivation, to its downstream targets, and (ii)
the updated count of inactive molecules to its upstream entities, through the inputLinkInfo.

The delay time output method

The method verifies, for each split, whether its (i) delay time is expired, and (ii) the state is still
active; whenever those conditions are verified, the method creates a message to be sent to its down-
stream targets through the outputActivation, setting the message id, size and target using the
information stored structure.

The lifetime ended method

The method verifies, for each split, whether its (i) lifetime is expired, and (ii) the state is still active;
whenever those conditions are verified (activationTime + lifetime), the method activates
the deactivation scheduler method.
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SyQUAL: A Web-oriented Platform for Robustness and
Sensitivity Analysis

This chapter presents the SyQUAL, a platform for robustness/sensitivity analysis.
Section 5.1 describes the platform architecture and its building blocks.

5.1 Platform Architecture

As briefly introduced in Chapter 1, SyQUAL is a web-oriented platform designed to provide a set
of facilities for modeling and simulation of biological systems described through a Systems Biol-
ogy Markup Language (SBML) model, and to perform automatized robustness/sensitivity analysis
under specific conditions. Given its web-oriented nature, SyQUAL does not require any particular
library or adjustment to be used, allowing the user to focus only on experiment setting and execu-
tion.
As shown in Figure 5.1, the SyQUAL platform is organized into two main blocks: front-end and
back-end.

Each block consists of components that perform specific tasks, as follows:

• Front-end block
– SBML Importer
– Pathway Detail and Initial Conditions Setting
– Simulation Setting
– Results

• Back-end block
– SBML Validator and Data Enrichment
– SBML-to-SystemC Translator

The platform follows a modular-oriented structure. Each component prepares, separately and
autonomously, all necessary support data for each other. In such a way, it is possible to keep a good
level of maintenance and expandability, simplifying the inclusion of new features.
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Fig. 5.1. The SyQUAL Platform.

Front-end Block

Basically, the front-end block (Figure 5.2) represents the interaction point (user interface) between
the user and the back-end block. Next sections describe the user interface components.

Fig. 5.2. The SyQUAL User Interface.
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SBML Importer

This component represents the starting point in any new user-defined project. The SBML import
component is designed to facilitate the uploading of any SBML-based model. It provides a support
for the SBML Level 2, available through the Reactome database (Joshi-Tope et al. [61]), one of the
most used databases for biological processes, and SBML qual.

Reactome is a hand-curated peer-reviewed database of biological processes, mostly (Homo
Sapiens)-based. All biochemical reactions that take place in an organism are grouped under the
term “reactome”. These biochemical reactions represent the Reactome basic building blocks, and
they are organized into networks (pathways), each one associated with a specific biological process,
such as:

• Pathways of intermediary metabolism.
• Regulatory pathways.
• Signal transduction.
• High-level processes (e.g. the cell cycle).
• Neural function.
• Immune function.

In Reactome, pathways are visually represented in a full mechanistic fashion, and provided in
a computational format. Pathway reactions are species-specific and experimentally verified through
literature citations, otherwise they are manually inferred using non-human experiments. Reactome
was not the only database taken into account. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) represents a pathway database designed for methodical analysis of gene functions. KEGG
provides information on metabolic and signaling pathways, available for different species (from
bacteria to complex organisms), represented as manually drawn pathway maps. In these maps, inter-
acting molecules and reactions are represented through links that connect genes and their products,
mostly proteins. However, KEGG showed important limitations, as reported below:

• It uses different data models to represent signaling and metabolic pathways, in which a semantic
graph representation is counterposed to a chemical reaction one. This semantic graph represen-
tation takes into account only positive/negative contributions, without reporting more complex
interactions, such as catalysis, and so on.

• KEGG relies on Enzyme Commission (EC) numbers used to associate metabolic reactions to
physical polypeptides (gene/protein databases), leading to ambiguous and potentially erroneous
assignments.

In SyQUAL, the SBML description can be further enriched by adding Uniprot IDs to the cor-
responding biological entities. The Universal Protein Resource (Uniprot, [21]) is a database of
information on proteins. SyQUAL uses these IDs to identify potential drug targets, fundamental for
the drug-based knockout (Robustness/Sensitivity) analysis.

A user can type any Uniprot ID;Entity ID list into a specific textarea, as reported in Figure 5.3.
In particular, this list refers to the Colitis-associated Colon Cancer Pathway, as described in Sec-
tion 6.2 .

To build this list, any Uniprot ID must be associated with the biological entity ID; depending
on the SBML chosen, Level 2 or qual, the biological entity ID (highlighted in red) is expressed as
follow:

• SBML Level 2
<species compartment="default" id="TGFB" initialAmount="0"
name="TGFB"/>
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Fig. 5.3. An example of Uniprot ID;Entity ID list.

• SBML qual
<qual:qualitativeSpecies qual:compartment="default"
qual:constant="false" qual:id="TGFB" qual:name="TGFB"
qual:maxLevel="1"/>

and, the resulting list is:

P01137;TGFB
P35354;COX2

...

SBML Importer can be used to convert any SBML Level 2 description into an SBML qual one.
Currently, this represents a unique feature.

Any uploaded SBML model generates a new job, in which the (i) JOB ID (a unique job identi-
fier), (ii) SBML level, and (iii) version are visualized, as shown in Figure 5.4.

Fig. 5.4. A job generated by the submission of an SBML qual description.
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Pathway Detail and Setting of Initial Conditions

This component shows summary information retrieved from the submitted SBML model and en-
riched through the SBML Validator component. Moreover, it provides a topological visualization
of the loaded pathway and an interface to set all initial conditions, used as base for any performed
experiment.

SyQUAL reports a complete list (Figure 5.5) of biological entities (e.g., genes, proteins, miR-
NAs) supplied by their Uniprot IDs if available, and a list of DrugBank (Wishart et al. [111]) drugs
associated with each biological entity if available. Eventually, it reports a list of identified issues
generated by the SBML Validator.

Fig. 5.5. Biological insight retrieved from an SBML description and enriched using SyQUAL. List
of biological entities supplied with their Uniprot IDs and drugs. For a given biological entity, drugs
are shown if and only if the biological entity represents their target.

The DrugBank database provides details of drugs (i.e., chemical, pharmacological and pharma-
ceutical), comprehending their targets (i.e., structure, sequence, and pathway). The provided drugs
are (DrugBank version 5.0):

• 8250 drug entries including 2016 FDA-approved small molecule drugs;
• 229 FDA-approved biotech (protein/peptide) drugs;
• 94 nutraceuticals;
• Over 6000 experimental drugs.

Drugs are grouped into seven different drug categories (Figure 5.6), as follows:

• Approved drugs (according to the “Food and Drug Administration” - FDA).
• Small molecular drugs.
• Experimental drugs.
• Investigational drugs.
• Illicit drugs.
• Withdraw drugs.
• Biotech drugs.
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Fig. 5.6. Drugs categories and their corresponding labels, supported by the SyQUAL platform.

In SyQUAL, drugs categories are characterized by a specific color and number label. The main
aim is to help users to quickly identify drug categories shown in specific parts of the SyQUAL
platform. Each drug reports, if available, a comprehensive set of information, such as:

• Pharmacological actions (yes, no, unknown).
• Actions (inhibitor, activator, etc.).
• Drug ID, Drug name, and so on.
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Drugs can be used to identify potential targets. In this first stage, SyQUAL carries out the drug-
based Robustness/Sensitivity analysis only through those drugs that are characterized by an in-
hibitor biological action. Moreover, since drugs are divided into categories, SyQUAL helps users
to perform more accurate drug-dependent experiments. Details of drugs associated with a specific
target (Figure 5.7) can be retrieved by clicking on the magnifier icon, as shown in Figure 5.5.

Fig. 5.7. Drugs details, such as drug id, drug name, and general function, associated to the COX2
target.
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SyQUAL collects such acquired and enriched knowledge to provide an easy way to set exper-
imental initial conditions. These conditions can be set through a initial condition setting interface,
as shown in Figure 5.8.

Fig. 5.8. Experimental initial conditions setting interface.

Experimental initial conditions can be grouped as:

• A set of stimuli to be activated. Stimuli are biological entities that act as starting points of a
simulation. Each stimulus can be (i) activated only during the initial (option Init ON) part of
a simulation, or (ii) kept always active (option Fixed ON) during the whole simulation. As
default, no stimulus is selected.

• A set of drugs to be used (Figure 5.9). As default, no drug is used.
• A set of biological entities to be knocked out. In this case, a user can force the suppression of

one or more entities. SyQUAL simulates the presence of hypothetical drugs, even if no drug is
available. Suppression can influence the biological entity during a simulation according to two
temporal points: the initial part (option Init OFF) or the whole time (option Fixed OFF).
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Fig. 5.9. Example of drug list available for the Colitis-associated Colon Cancer Network (Sec-
tion 6.2).

To verify if a given submitted pathway has been correctly imported, SyQUAL provides its graph-
ical representation, as shown in the example of Figure 5.10. In this first stage, SyQUAL uses this
visualization to show the pathway topology. A future extension will provide all previously described
options (Init ON, and so forth) through the direct interaction with the pathway graphical represen-
tation.
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Fig. 5.10. The SyQUAL pathway graphical representation.

Simulation Setting

All specified experimental initial conditions are used as base of any performed simulation. SyQUAL
provides a set of options to perform the Robustness/Sensitivity analysis, according to:

• Zero Knowledge-based Knock Out Approach.
• Drug Knowledge-based Knock Out Approach.

Zero Knowledge-based Knock Out

Any experiment performed using this approach does not require any particular information about
the pathway to be analyzed. For a given pathway composed of N unique biological entities, SyQUAL
performs N distinct simulations, in which a specific biological entity is knocked out. This approach
is used when there is no knowledge about the pathway, and the user wants to investigate how its
behavior can change under different knockout conditions. All simulations are performed automati-
cally. A final report shows the normal condition compared with the perturbed ones. The complexity
is linear, as it is proportional to the number of unique biological entities to be knocked out. Fig-
ure 5.11 shows the Zero Knowledge-based Knock Out interface.
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Fig. 5.11. The Zero Knowledge-based Knock Out interface.

Drug Knowledge-based Knock Out

Experiments performed through this approach use drugs to identify which biological entities have to
be knocked out. These drugs are selected through the Uniprot IDs, and grouped per target. There can
be one or more drugs that target the same biological entity. SyQUAL provides three ways to knock
out biological entities using drugs: Systematic Knock Out, Precise Knock Out, and Combinatorial
Knock Out (Synthetic Lethality, Kaelin et al. [62]).

Systematic Knock Out. The number of performed simulations is proportional to the amount of
unique targets, K. For a given pathway of N biological entities, the number of simulations is:

K ≤ N (5.1)

Given a hypothetical pathway in which

• Drug D1 targets biological entities E1 and E2.
• Drug D2 targets biological entities E1 and E2.
• Drug D3 targets biological entity E3.
• Drug D4 targets biological entity E1.

the number of unique simulations K is equal to 3, since {D1, D2} target the same set of bio-
logical entities {E1, E2}, leading to the same behavior (in this stage all drugs act as inhibitors). In
such a way, SyQUAL avoids repeating the same simulations, reducing the computational time. In
particular:

• A single drug can target more than one biological entity. In this case, a single simulation knocks
out all biological entities that are target for the drug.

• Multiple drugs can target the same biological entity. As a consequence, a single simulation
knocks out only the targeted biological entity.

Figure 5.12 shows the Systematic Knock Out interface.
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Fig. 5.12. The Systematic Knock Out interface.

Precise Knock Out. In its basic version, a single simulation is performed. The user manually
choses a set of drugs to be used. In this simulation, a user can observe the system behavior as
result of combining one or more drugs, for example, by simulating a therapeutic drug cocktail. Sys-
tematic and Precise knock outs are essentially distinguished by their unsupervised and supervised
approaches, respectively. In the first one, the SyQUAL platform decides which biological entity must
be knocked out on the i-th experiment, in contrast with the second one, where the user choses which
biological entity must be knocked out.

In the advanced version, Precise knock out allows to use the same set of drugs (used to knock
out biological entities) as initial condition for a set of simulations, M, in which a set of user-defined
stimuli are combined. The number of simulations M is expressed as follows:

M =

h=n∑
k=1

Ck
n (5.2)

where n represents the number of selected stimuli. Figure 5.13 shows the Precise Knock Out
interface.

Combinatorial Knock Out. This approach performs a combination of biological entities knocked
out in order to investigate the Synthetic Lethality on a given pathway. As reported in literature
(Kaelin et al. [62]), Synthetic lethality appears when a combination of mutations in two or more
genes leads to cell death, whereas a single mutated gene does not. Synthetic Lethality shows func-
tional relationships between genes. The amount of performed simulations, M, is expressed as fol-
lows:

M =
Nk!

2(Nk − 2)
(5.3)
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Fig. 5.13. The Precise Knock Out interface.

where Nk represents the number of unique biological entities knocked out. Nk depends on
the set of drugs chosen, comprehending all of them or a used-specified set. Figure 5.14 shows the
Combinatorial Knock Out interface.

Fig. 5.14. The Combinatorial Knock Out interface.



64 5 SyQUAL: A Web-oriented Platform for Robustness and Sensitivity Analysis

Updating Policies

Zero and Drug knowledge-based knock out approaches (Figure 5.15) can be used according to: a
synchronous updating policy and an asynchronous updating policy, based on an modified version
of the BIODEA (Chapter 4) Model v1 and Model v8, respectively. Briefly:

• Synchronous Updating Policy. This approach represents the simplest one. Given a boolean
representation of a biological pathway, each element is evaluated by using a global clock. In this
case, the time step, (hereafter called delay time) is equal for all biological entities. Interactions
among entities are performed in a synchronous manner. For each time step, all entities states
are evaluated, according to their own boolean rules (transfer function). Such a policy provides
a fast way to investigate some basic behaviors, such as feedback loops, particular signals paths,
and simple attractors.

• Asynchronous Updating Policy. This approach provides a different delay time for each system
element output. Interactions among entities are performed in an asynchronous manner. More-
over, this policy introduces the lifetime concept, that is, the maximum time in which an entity
can execute its biological function. As default, each element uses the same lifetime. Such a
policy allows investigating more complex behaviors.

Figure 5.15 shows the synchronous and asynchronous updating policies interface.

Fig. 5.15. Synchronous and asynchronous updating policies interface.
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Results

SyQUAL generates a set of simulations according to a specific updating policy and knock out ap-
proach, in which one or more biological entities have been knocked out. In each simulation, bio-
logical entities change their state value from active (ON) to inactive (OFF). The term activity level
indicates the changes in the state value over the time. The activity level is nothing more than the
sequence of activations and inactivations (e.g., OFF, ON, OFF, ...) for a specific biological entity.
For each simulation, SyQUAL produces:

• A global activity level, GALS , generated by summing all biological entities activity levels
(EALs), as follows:

GALS =

i=N∑
i=1

EALi (5.4)

SyQUAL provides GALS expressed as percentage, PGAL, as shown below:

PGAL =
GALS

GALN
(5.5)

where GALN represents the global activity level under normal conditions. A user can quickly
identify the perturbations (Figure 5.16) that could lead to deep change (under or over expres-
sion) into the pathway behavior.

Fig. 5.16. Figure shows PGAL values under perturbed conditions. Each simulation is performed
according to a specific biological entity knocked out (in this figure, the Zero Knowledge-based
knock out).
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• A heatmap reporting the activity levels of all biological entities. An example of heatmap ac-
cording to the GP130 knock out is shown in Figure 5.17.

Fig. 5.17. An example of heatmap, in which the GP130 biological entity has been knocked out. For
each biological entity the state can be active (red) or inactive (cyan). Time progression from left to
right.

• A set of identified attractors if available.
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As additional resources, any experiment is supplied with:

• An expression profile heatmap, whether available, created by merging all simulation activ-
ity levels and clustered them per column according to the Pearson’s correlation coefficient,
as shown in Figure 5.18. Rows represent biological entities, while columns represent distinct
experiment, in which one or more biological entities are knocked out.

Fig. 5.18. An example of expression profile heatmap. It merges all simulation activity levels (each
heatmap associated to each biological entity knocked out) and clusters them per column according
to the Pearson’s correlation coefficient. Rows represent biological entities, while columns represent
distinct experiment, in which one or more biological entities are knocked out.
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• A heatmap reporting the activity levels of all biological entities under normal conditions, as
shown in Figure 5.19.

Fig. 5.19. An example of heatmap generated under normal conditions. For each biological entity
the state can be active (red) or inactive (cyan). Time progression from left to right.

Each heatmap is generated through pheatmap (Kolde et al. [69]), a R package.

As additional feature, a user can examine biological entities activity levels without any graphical
representation. Activity levels are expressed through a normalized (in the range [0,1]) numerical
representation.
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A user can investigate activity levels according to a specific (i) knock out approach, (ii) updat-
ing policy, and (iii) a set of biological entities (Figure 5.20) of interest.

Fig. 5.20. An example of selected biological entities to be investigated.

It is possible to investigate and quantify how the entity activity level is related to each other,
under normal (Figure 5.21) and perturbed condition (Figure 5.22).

Fig. 5.21. An example of biological entities activity levels under normal condition.

Fig. 5.22. An example of biological entities activity levels under perturbed condition. Each row rep-
resents a specific simulation, in which a biological entity has been knocked out (rightmost column).
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Back-end Block

SBML Validator

This component plays a key role for retrieving information from a given biological system described
through an SBML model. SyQUAL supports the SBML Level 2, which is provided by the Reactome
database, and the SBML qual, in order to generate a set of fundamental information for the “SBML-
to-SystemC Translator” component. Reactome provides a well-defined knowledge about reactions
for a specific biological process, compared to KEGG or other resources.
Supporting Reactome SBML Level 2, it is possible to construct a fully-comprehensive qualitative
reactions boolean network, by keeping important details related to the molecular interaction nature,
such as inhibition, stimulation, and catalysis. Any submitted Reactome pathway is analyzed to
extract details such as:

• Biological entity names
• Stoichiometries
• Uniprot IDs
• Go terms
• Reactome IDs
• Kegg IDs
• Chebi IDs
• Reactions
• Reaction effects (compound, stimulation, inhibition, catalysis, production)
• Reaction signs (positive, negative)

Differently from SBML Level 2, the SBML qual preserves a subset of these details, by limiting
the number and the quality of observable behaviors. Moreover, Reactome SBML Level 2 model
reports:

• an SBML annotation, describing all involved elements, reactions and reactants.
• an SBGN (Systems Biology Graphical Notation) annotation, whether available, describing the

system through a graphical representation.

Supporting Reactome SBML Level 2 pathways, SyQUAL embraces the Process Description
(PD) SBGN diagram notation, for the following reasons:

• AF diagrams can be ambiguous.
• An AF diagram should be associated with either a PD or ER diagram, whether possible.
• Automatic conversion between PD and/or ER to AF.

The SBGN annotation plays a fundamental role to construct a fully-comprehensive network,
since there are no details, for example, about inhibition and stimulation reported by the SBML
annotation. SyQUAL creates a fully-comprehensive network by merging the SBML and SBGN an-
notations, when this last one is available. This represents a unique and useful feature to model all
potential interactions in a given pathway.

SyQUAL tries to deal with some issues concerning the use of Reactome pathways. Since there
is no a well-defined correspondence between the SBML and SBGN annotations, SyQUAL tries to
match reactions among SBML and SBGN. Any identified issue is visualized to the user, by using
the web interface.

In order to manage any loaded SBML, SyQUAL relies on the LibSBML API (Bornstein et al.
[11]), in particular the Python Library version, to acquire and manipulate a SBML model. LibSBML
API is available for several languages and provided with a complete documentation.

LibSBML is a free, open-source programming library to read, write, manipulate, translate, and
validate SBML files and data streams.
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SBML-to-SystemC Translator

SBML Validator component generates a set of resources used to facilitate the SBML annotation
mapping into a complete standalone SystemC-based simulator. Biological entities and interactions
are translated into processes and signals. Processes are the central building blocks in a SystemC
description. A SystemC description can be seen as a set of concurrent processes that communicate
with each other using (clock or event)-dependent signals. As discussed in Chapter 4, SyQUAL maps
each aspect of a SBML-based biological entity as follows:

• The entity behavior is modeled through a FSM. FSM is used to formally model the entity
boolean representation in order to manage the entity state (e.g., active, inactive), state transitions
and guard conditions, such as the boolean ones. The FSM implementation is accomplished
through a SystemC process, which is sensible to any event coming as input signals.

• Each biological entity (e.g., gene, protein, etc.) is implemented through a SystemC module, in
which both inputs (P and Us) and outputs (Ds) are SystemC ports.

Any new event (e.g., signal value variation) which occurs to a specific entity input, leads to
a new evaluation of its guard conditions, bringing to a potential updating of its state and output
signals.

Lastly, SyQUAL core simulator relies on a discrete event-based framework developed in Sys-
temC, providing efficient simulations of wide networks.

Reactions Boolean Network

In a boolean network, the node state value depends on a combination of its inputs, which in turn
depends on their inputs combination, and so forth. A single change in a node state value implies
a cascade evaluation of each directly reachable downstream node state. Biologically speaking, this
behavior can be seen as a binding reaction process (creation of a molecular complex), in contrast
with the catalysis one, in which the output nodes are not bound to the fate of their inputs.

Through the asynchronous updating policy, SyQUAL provides a way to simulate both interac-
tion typologies (Figure 5.25), introducing the concept of Reactions Boolean Network, as extension
of observable behaviors in a boolean network. In a Reactions Boolean Network, the node state value
depends on both the combination of its inputs and their interaction types. To better explain such con-
cepts, Figure 5.23 introduces a hypothetical Reactome catalysis reaction, while Figure 5.24 shows
the corresponding SyQUAL representation. Reaction elements are defined as follows:

• A and B are molecular compounds.
• C is a molecular catalyzer.
• F is a molecular inhibitor.
• D and E molecular products.
• R catalysis reaction.

As shown in Figure 5.23, the state value of the reaction products D and E can assume value
OFF (inactive) or ON (active), according to the following transfer function:

state(D) = state(E) = A & B & C & !F (5.6)

where
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state(D) =

{
ON, if A,B,C are ON and F is OFF
OFF, otherwise

(5.7)

Fig. 5.23. An example of a hypothetical Reactome catalysis reaction.

In contrast, in Figure 5.24, the state value of the reaction products D and E can assume value
ON (active), if and only if the transfer function result is equal to ON, otherwise no update occurs.
Biologically speaking, this behavior can be assimilated to the lipid biosynthesis.

Fig. 5.24. The corresponding SyQUAL representation of the reaction shown in Figure 5.24.

The catalysis reaction shown in Figure 5.23 represent the canonical Reactome representation
for such reaction type.

In this reaction, the catalyzer C, through the molecular compounds A and B, accomplishes the
catalysis process, in order to create products D and E. SyQUAL redefines the Reactome catalysis
topology to model this kind of reaction in a reasonable logic representation, as shown in Figure 5.24.
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SyQUAL provides a way to model and simulate more complex behaviors in contrast with classic
boolean networks, in which all reactions are modeled as binding processes, by limiting the number
of observable behaviors.

SyQUAL models catalysis and binding reactions as shown in Figure 5.25, highlighting how
these reactions react under activation and deactivation stimuli. Below, some useful notation:

• Stimulus (thunder).
• Biological entity (circle).
• Reaction process (square).
• Interaction (arrow).

Each biological entity can be activated (displayed as filled node) or deactivated (displayed as
opaque entity). Under activation stimuli, each reaction type reacts producing its products, as ex-
plained below:

• The binding process produces a single molecular complex C. This complex is the result of
the combination of A and B. The fate of this complex C is tied to its own constituents. The
molecular complex represents the reaction process itself.

• The catalysis process produces the elements G and H. These ones are the result of the transfor-
mation of E and F. Despite the binding process, G and H are no more dependent on the reaction
process R.

Fig. 5.25. The SyQUAL representation of binding and catalysis reaction behavior under activation
and deactivation.
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The main difference is observable under deactivation stimuli, in which each reaction type reacts
as follows:

• In the binding process, if one or more biological entities of the complex turn to be deactivated
(e.g., degraded), as direct consequence the complex C is no longer active.

• In the catalysis process, if one or more biological entities of the reaction turn to be deactivated,
no reaction product is affected by any deactivation.

As a consequence, it allows observing more complex behaviors.
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Case Studies

This chapter shows how BIODEA and SyQUAL have been applied to formalize and verify biological
hypotheses on given biological systems.

Sections show experimental results obtained by modeling and simulation biological systems ac-
cording to different cellular functionalities, such as signaling and gene regulation. Each biological
case study is correlated by an (i) introduction to the biological phenomenon, (ii) biological hypothe-
ses to be investigated, (iii) experimental conditions, (iv) experimental results, and (v) conclusions.

Section 6.1 describes the Signaling Network Controlling LFA-1 beta2 integrin activation me-
diating Leukocyte recruitment from the blood into the tissues, focused on uncover those dynamics
behind the integrin periodic oscillation.

Section 6.2 describes the Colitis-associated Colon Cancer (CAC) Network. It uncovers those
dynamics that stand behind the inflammation-associated tumorigenesis.

6.1 The Signaling Network Controlling the Leukocyte Recruitment
from the Blood into the Tissues

Introduction

Signaling network controlling LFA-1 beta2 integrin activation mediates leukocyte recruitment from
blood into tissues. The mechanism of leukocyte recruitment is a fundamental homeostatic process
of the immune response. It is modeled as a concurrent ensemble of cellular events consisting of a
stereotyped sequence of leukocyte behaviors on the vascular endothelium and including tethering,
rolling, integrin activation, arrest and diapedesis. In this context, a critical event is integrin activation
since it mediates cell arrest underflow and diapedesis (Ley et al. [76]).

In order to investigate dynamics underlying the leukocyte recruitment, Figure 6.1 reports a
complex signal transduction network involved in controlling integrin activation (Constantin et al.
[22]) developed at Laboratory of Cell Trafficking and Signal Transduction, University of Verona
(http://dp.univr.it/~laudanna/LCTST/ ). Mainly generated by chemotactic factors, it involves at least
67 different intracellular molecules, in which (i) JAK protein tyrosine kinases, (ii) RHO and RAP
small GTPases, (iii) lipid kinases and (iv) a number of cytoskeletal proteins cover an important role
(Montresor et al. [85]).

The concerted action of these signaling proteins generates a concurrent modular mechanism
of regulation of integrin activation characterized both by topological and dynamic properties. It
includes the generation of specific emergent properties, such oscillators and hysteresis. Although a
qualitative characterization of such a complex mechanisms is, at least partially, available.
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Due to the lacking of a complete quantitative description, both the dynamical modeling of the
leukocyte recruitment process and the identification of emergent properties involved in the leuko-
cyte regulation is still limited.

Fig. 6.1. The leukocyte signaling network. The chemokine CXCL12 (green node) acts as triggering
signal for the integrin (ITBG2) cascade activation, where orange nodes take part of the integrin
activation. The integrin ITBG2 (cyan node) represents the system response to the chemokine signal,
resulting in the integrin activation (adhesion).

Figure 6.1 shows the leukocyte recruitment signal transduction network. It is characterized by
different interaction types grouped as follows:

• Steric activation (S), inhibition (I), and phosphorylation (P) are treated as simple activation/de-
activation signals (molecular complex creation). After their activation, biological entities are
sensible about the fate of their activators.

• Cofactor synthesis (CS) is treated as synthesis signal. After their activation, biological entities
are no longer sensible about the fate of their activators.

These interactions are biologically interpreted as follows:

• Steric activation. In this interaction, molecules bind each other in order to create a molecular
complex. This binding generates a spatial arrangement of atoms in involved molecules.

• Inhibition. In this interaction, a molecule A binds a molecule B, resulting in a decrease of B
activity.

• Phosphorylation. In this interaction, a protein kinase adds a “phosphate group” to an amino acid
residue (proteins building blocks) of another protein, resulting in a strong energization of the
phosphorylated protein. A protein kinase is an enzyme that catalyzes the transfer of a phosphate
group from the Adenosine triphosphate (ATP) to a specified molecule.

• Cofactor synthesis. In this interaction, a chemical synthesis generates a complex organic
molecules from simple components. Cofactors are non-protein chemical compounds or metallic
ions. They are involved in protein biological activities.
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Behaviors of Interest

The analysis of the leukocyte recruitment signal transduction network aimed at investigating the on-
off dynamics of integrin triggering, representing the ITGB2 oscillation. Oscillations are the result
of activation states alternated to inactivation ones, and vice versa. Among these oscillations, the
analysis mainly involved the investigation into those ones which are characterized by a periodic
trend, since the integrin oscillation phenomenon shows a regular behavior.

Integrins are proteins characterized by mechanical and biochemical functions. In mechanical
context, they physically attach the cell cytoskeleton (a complex network of interlinking filaments
and tubules enclosed among the cell nucleus and the plasma membrane) to extracellular matrix (the
cell physical scaffolding). In biochemical context, integrins act as sensor to identify if adhesion
occurs.

Figure 6.2 shows how integrins are involved in leukocyte recruitment from blood vessels into
inflamed tissues.

Fig. 6.2. Integrin role in leukocyte recruitment from blood vessels into inflamed tissues. Figure
shows how integrin is involved in the leukocyte adhesion. The “Selectin” works as signal used to ad-
vise the leukocyte about an inflamed area. Activated integrins work as anchor letting the leukocyte to
proceed toward to the inflamed area (source: http://www.bloodjournal.org/content/128/4/479?sso-
checked=true).

In order to identify those configurations (a set of input values used for each simulation) that
lead to periodic oscillations, analysis relied on ABV, as described in Section 4.2. Figure 6.3 shows
two types of assertions, P1 and P2, used to differentiate oscillations. Each assertion is designed to
identify periodic oscillations with specific positive and negative edges. The positive edge represents
the time frame in which the integrin is active, corresponding to the leukocyte adhesion. Differently,
the negative edge represents the time frame in which the integrin results inactive.

Assertion P1 considers those configurations that lead to periodic oscillations, in which positive
and negative edges are comparable up to an additive/subtractive tolerance δ.

Assertion P2 results less constrained, since it considers those configurations in which only
positive edges must be comparable up to an additive/subtractive tolerance δ.

All identified useful configurations have been used as input data for the robustness/sensitivity
analysis phase (Section 4.3). These configurations have been simulated using a mutated model, in
which mutated entities have been kept inactive. In this analysis, mutated entities have been con-
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Fig. 6.3. Periodic oscillation identified according to assertion P1 and P2.

sidered inactivated as result of loss of function (alteration due to disease) or drug action (through
inhibition).

Experimental Conditions

As described in Section 4.1, the delay time represents the time spent by a biological entity to en-
counter its targets, while lifetime represents the maximum time from the activation instant in which
the biological entity carries out its biological function.

The leukocyte recruitment signal transduction network has been simulated considering delay
times in range [2-8] ms (with a step of 6 ms) and lifetimes equal to 50 ms, since these values
represent a reasonable approximation of experimental data available in literature.

Through the automatic test pattern generator (Section 4.2), simulations have been performed
exploring the whole delay time solution space. The amount of generated configurations (a unique
configuration for each simulation) is equal to ' 2.14 · 109, as result of 2 different delay times (2
and 8 ms) and 31 biological interactions. Each simulation has been performed within a total simu-
lated time of 200 ms, where the periodicity has been set with a tolerance of ±10%. Such a period
represents the average stopping time of a cell when it interacts with the blood vessel epithelium.
Notably, although accurate experimental measurement of on-off dynamics of integrin triggering is,
at the present, unavailable, the extremely rapid kinetics of leukocyte arrest under flow conditions,
occurring in the experimentally-determined range of few milliseconds clearly suggest that it is rea-
sonable to consider this rapid time-frame as a correct reference time to simulate on-off dynamics
of integrin triggering. Furthermore, since directional leukocyte motility (chemotaixs) appears to
maintain constant speed, at least in the context of a chemotactic gradient, it is reasonable to observe
regular oscillatory dynamics of signaling mechanisms controlling integrin triggering.
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Experimental Results

Models Comparison over Execution Time

As described in Section 4.5, the availability of different models provided a way to deal with large
and complex networks of different levels of accuracy. In order to reduce the computational cost,
models (v1, v2, . . ., v9) have been chosen according to required properties to be observed.

Model Number of configurations Approximate execution time Properties

Synchronous (v1) 1 0.01 s Attractors

Synchronous with classes (v2) 4,194,304 195 s Attractors

Asynchronous (v5) 2.147.483.648 19 h Attractors

Asynchronous with lifetime (v6) 2,147,483,648 80 h
Attractors

Number/type of oscillations

Random (v7) random(2,147,483,648) 25 h
Attractors

Number/type of oscillations

Asynchronous with lifetime and cofactor

synthesis (v8)
2,147,483,648 150 h

Attractors

Number/type of oscillations

Asynchronous with lifetime, cofactor

synthesis, molecular concentration (v9)
2,147,483,648 715 h

Attractors

Number/type of oscillations

Table 6.1. Models comparison.

The Role of Lifetime and Cofactor Synthesis

In this first stage, experiments aimed at investigating whether the cofactor synthesis represented an
essential condition to observe ITGB2 periodic oscillations. Model v6 and v8 have been compared
considering the assertion P1, classifying the resulting periodic oscillations according to a period
threshold equal to the entities lifetime (50 ms).

• Model v6. Table 6.2 shows the number of configurations that led ITGB2 to oscillate. Oscil-
lations are grouped as periodic and aperiodic oscillations. Table 6.3 provides more details on
observed periodic oscillations.

No. of configurations with oscillation of ITGB2 19,157,278
No. of periodic oscillation 19,157,278

No. of aperiodic oscillation 0

Table 6.2. Assertion P1. Number of periodic and aperiodic oscillations according to a tolerance
δ = 10%.
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No. of oscillations
No. of configurations

Period = 50ms Period > 50ms

3 19,157,278 0

Table 6.3. Assertion P1. Periodic oscillations according to a tolerance δ = 10%.

• Model v8. Table 6.4 shows the number of configurations that led ITGB2 to oscillate. Oscil-
lations are grouped as periodic and aperiodic oscillations. Table 6.5 provides more details on
observed periodic oscillations.

No. of configurations with oscillation of ITGB2 1,996,974,016
No. of periodic oscillation 2,008,188

No. of aperiodic oscillation 1,994,965,828

Table 6.4. Assertion P1. Number of periodic and aperiodic oscillations according to a tolerance
δ = 10%.

No. of oscillations
No. of configurations

Period = 50ms Period > 50ms

2 0 2,008,188

Table 6.5. Assertion P1. Periodic oscillations according to a tolerance δ = 10%.

Experiments showed a significant divergence. Considering Model v6, all configurations associ-
ated with the ITGB2 oscillation are characterized by a periodic trend, even without considering any
tolerance δ. Remaining configurations (majority) did not lead to any ITGB2 activation. In contrast,
Model v8 showed a different behavior. The configurations majority led to aperiodic oscillations,
with a small part associated to periodic ones. By comparing these results, it is clear that Model v6
is not sufficient to correct reproduce the biological phenomenon, since it cannot discern any aperi-
odic configuration. In such a way, Model v8 allowed to better represent the leukocyte recruitment
phenomenon in a more realistic way.

Model v8: Robustness/Sensitivity Analysis (Assertion P1)

As Model v8 provided a better representation of the dynamics of the leukocyte recruitment network,
robustness/sensitivity analysis mainly focused on such a model.

Table 6.6 (first row - Golden model1) reports the mutation analysis results obtained using the
assertion P1.

The table reports the number of configurations, among all the generated ones, that led to aperi-
odic and periodic oscillations (column Useful conf. (periodic)), and the relative percentage.

1 The golden model represents the network with no mutation injected.
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Mutated biological
entity

Aperiodic
config.

Useful config. (periodic)
No. of config. Percentage (%)

Golden model - 2,008,188 100

CXCR4 0 0 0
JAK3 2,008,188 0 0
JAK2 2,008,188 0 0
ABG 0 2,008,188 100
VAV1 0 0 0
PLC 0 2,008,188 100

RAC1 860,652 1,147,536 57
RHOA 860,652 1,147,536 57
CDC42 2,008,188 0 0

IP3 0 2,008,188 100
DAG 17,640 1,990,548 99
PLD1 0 0 0

PIP5K1C 0 0 0
CA 0 2,008,188 100

RASGRP1 0 2,008,188 100
PA 0 0 0

RAP1A 0 2,008,188 100
PIP2 0 0 0

RIAM 0 2,008,188 100
RASSF5 0 2,008,188 100

TLN1 792,036 1,216,152 61
FERMT3 952,140 1,056,048 53

Table 6.6. Assertion P1. Mutation analysis experimental results according to a tolerance δ = 10%.

Model v8: Robustness/Sensitivity Analysis (Assertion P2)

As analyzed in “The Role of Lifetime and Cofactor Synthesis”, Model v8 has been simulated ac-
cording to assertion P1. Starting from this analysis, Table 6.7 shows the number of configurations
that led ITGB2 to oscillate according to assertion P2. Oscillations are grouped as periodic and ape-
riodic oscillations.

No. of configurations with oscillation of ITGB2 1,996,974,016
No. of periodic oscillation 1,382,405,153

No. of aperiodic oscillation 614,568,863

Table 6.7. Assertion P2. Number of periodic and aperiodic oscillations according to a tolerance
δ = 10%.

Table 6.8 provides more details on observed periodic oscillations.
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No. of oscillations
No. of configurations

Period = 50ms Period > 50ms

2 1,231,107,615 4,864,608
3 146,414,786 0
4 18,144 0

Table 6.8. Assertion P2. Periodic oscillations according to a tolerance δ = 10%.

Table 6.9 (first row - Golden model2) reports the mutation analysis results obtained using the
assertion P2. The table shows the number of configurations, among all the generated ones, that led
to periodic oscillations (column Useful conf. (periodic)), the number of oscillations, and the relative
percentage.

Mutated biological
entity

Aperiodic
config.

Useful config. (periodic)
No. of config. Percentage (%)

Golden model - 1,382,405,153 100

CXCR4 0 0 0
JAK3 77,947,813 1,303,361,596 94
JAK2 77,947,813 1,303,361,596 94
ABG 0 1,264,395,681 91
VAV1 0 0 0
PLC 0 1,264,385,681 91

RAC1 22,201,983 1,360,203,170 98
RHOA 22,201,983 1,360,203,170 98
CDC42 4,628,087 1,377,777,066 99

IP3 162,947,837 1,200,594,788 87
DAG 27,692,815 1,352,551,442 98
PLD1 0 0 0

PIP5K1C 17,151,838 717,698,739 52
CA 162,947,837 1,200,594,788 87

RASGRP1 0 1,264,385,681 91
PA 0 0 0

RAP1A 0 1,264,385,681 91
PIP2 17,151,838 717,698,739 52

RIAM 27,347,365 1,335,484,156 97
RASSF5 0 1,306,696,545 95

TLN1 155,848,165 1,206,983,356 87
FERMT3 114,441,433 1,267,963,720 92

Table 6.9. Assertion P2. Mutation analysis experimental results according to a tolerance δ = 10%.

Results highlighted a significant difference between assertions P1 and P2. In assertion P1, only
≈ 0.1% of all configurations (Table 6.4) led to periodic oscillations, characterized by 2 peaks (Ta-
ble 6.5). Mutation analysis (Table 6.6) underlined that the network is (i) extremely sensitive to the

2 The golden model represents the network with no mutation injected.
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path involving PIP5K1C (Figure 6.4) and (ii) robust to the path involving RASGRP1 (Figure 6.5).
Results also showed that JAK3/JAK2 and CDC42 (Figure 6.6) are essential to guarantee the oscil-
lation periodicity.

Fig. 6.4. Network shows an extremely sensitivity in the path involving PIP5K1C.

Fig. 6.5. Network shows a robustness in the path involving RASGRP1.
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Fig. 6.6. ITGB2 periodicity shows a strong dependence on CDC42 activity.

In assertion P2, Table 6.7 showed a higher amount of configurations that led to periodic os-
cillations whether compared with Table 6.4. The amount of useful configurations rose to ≈ 42%,
showing a number of oscillations between 2 and 4 peaks (Table 6.8). Mutation analysis (Table 6.8)
showed a smaller impact if compared with assertion P1 (Table 6.5). In this case, network showed a
sensitivity to the path involving RASGRP1.

Finally, considering those configurations characterized by 2 oscillations (peaks) and a period >
50 ms, assertion P2 showed a higher amount of oscillations if compared with assertion P1. It is
clear that oscillations identified with the assertion P1 represent a subset of those identified through
assertion P2.
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Model v9: Robustness/Sensitivity Analysis and Molecular Concentration

As described in Section 4.5, Model v9 provides a way to model several instances of each biological
entity. This model considers molecular concentrations, providing an addition level of accuracy com-
pared with previous models. Biological entities are represented through packets (instances). Each
packet (a set of molecules) is associated with a specific granularity. For instance, if a biological
entity is available with a molecular concentration equal to 100 molecules, it corresponds to:

• A single packet if the granularity G is equal to 100.
• Five packets if the granularity G is equal to 20.

Packets interact with an independent and concurrent way. Model v9 results are not directly
comparable with previous models, even considering its stochastic nature. Downstream targets are
chosen using a weighted random distribution. Since the distribution depends on the number of
inactive downstream molecules, same configurations can lead to different results.

Despite earlier models, Model v9 used assertions P1 and P2 to verify the periodic oscillation
of each packet which belongs to ITGB2. A configuration has been considered useful if at least 2
packets show a periodic oscillation.

Through the less restrictive assertion P2, the analysis showed a higher amount of configurations
(compared with Model v8) that led to periodic oscillations (Table 6.10), according to a granularity
G = 100. However, Table 6.11 showed that the major number of configurations is characterized
by a periodic trend with a single oscillation (peak), even varying the tolerance δ. An acceptable
explanation has been found in the fact that a single packet associated with each biological entity
was not sufficient to obtain a realistic simulation.

No. of configurations with oscillation of ITGB2 995,157,334
No. of periodic oscillation 913,670,077

No. of aperiodic oscillation 81,487,257

Table 6.10. Assertion P2. Number of periodic and aperiodic oscillations according to a tolerance
δ = 10% and a granularity G = 100.

No. of oscillations
No. of configurations

Period = 50ms Period > 50ms

1 46,422,844 769,731,464
2 144,168 97,370,486
3 1,115 0

Table 6.11. Assertion P2. Periodic oscillations according to a tolerance δ = 10% and a granularity
G = 100.

Nevertheless, mutation analysis (Table 6.12) confirmed the “sensibility” of the path involving
PIP5K1C.
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Mutated biological
entity

Aperiodic
config.

Useful config. (periodic)
No. of config. Percentage (%)

Golden model - 913,670,077 100

CXCR4 0 0 0
JAK3 12,846,246 298,207,210 33
JAK2 13,110,362 304,220,538 33
ABG 25,073,246 604,179,764 66
VAV1 0 0 0
PLC 17,090,388 406,236,965 44

RAC1 1,418,725 347,135,259 38
RHOA 1,418,221 347,137,534 38
CDC42 35,135,294 495,975,345 54

IP3 17,677,682 406,768,267 45
DAG 16,703,595 404,592,428 44
PLD1 0 0 0

PIP5K1C 0 0 0
CA 16,701,333 404,549,236 44

RASGRP1 16,704,734 404,589,369 44
PA 0 0 0

RAP1A 276,590,584 310,332,911 34
PIP2 0 0 0

RIAM 17,249,492 406,312,354 44
RASSF5 17,262,927 406,295,330 44

TLN1 17,256,921 406,309,417 44
FERMT3 14,835,463 405,267,383 44

Table 6.12. Assertion P2. Mutation analysis experimental results according to a tolerance δ = 10%.

Considering a lower granularity, with G = 20, the distribution of periodic oscillations over
peaks showed a more interesting trend. By comparing distributions of assertions P1 (Table 6.13)
and P2 (Table 6.14), this latter one showed a higher amount due to its less restrictive nature.

No. of packets oscillation periodically No. of configurations
1 114,547,929
2 6,230,568
3 179,006
4 2,110
5 5

No. of useful configurations 6,411,689

Table 6.13. Assertion P1. Packets grouped per number of periodic oscillations according to a toler-
ance δ = 30% and a granularity G = 20.

Even mutation analysis among assertions P1 (Table 6.15) and P2 (Table 6.16) showed a higher
discrepancy. It highlighted a strong divergence relative to the path involving RASGRP1.



6.1 The Signaling Network Controlling the Leukocyte Recruitment from the Blood into the Tissues 87

No. of packets oscillation periodically No. of configurations
1 308,833,171
2 44,528,655
3 3,489,149
4 84,958
5 272

No. of useful configurations 48,103,034

Table 6.14. Assertion P2. Packets grouped per number of periodic oscillations according to a toler-
ance δ = 30% and a granularity G = 20.

Mutated biological
entity

Aperiodic
config.

Useful config. (periodic)
No. of config. Percentage (%)

Golden model - 6,411,689 100

CXCR4 0 0 0
JAK3 6,139,431 10,931 0.17
JAK2 6,160,843 11,397 0.18
ABG 6,222,250 117,081 1.83
VAV1 0 0 0
PLC 5,998,363 63,497 0.99

RAC1 6,258,202 13,518 0.21
RHOA 6,257,591 13,260 0.21
CDC42 6,343,332 44,702 0.70

IP3 6,335,018 28,866 0.45
DAG 6,333,241 31,122 0.49
PLD1 0 0 0

PIP5K1C 5,476,751 1 0
CA 6,314,705 37,502 0.58

RASGRP1 5,997,093 64,006 1.00
PA 0 0 0

RAP1A 6,277,650 78,231 1.22
PIP2 5,292,903 3 0

RIAM 6,331,749 33,417 0.52
RASSF5 6,335,909 27,607 0.43

TLN1 6,302,617 30,303 0.47
FERMT3 6,341,841 2,1851 0.34

Table 6.15. Assertion P1. Mutation analysis experimental results according to a tolerance δ = 30%.

Most relevant differences have been found considering the number of periodic oscillations re-
lated to those mutations (inhibition) involving CDC42 and RASGRP1 paths, which lead to RAP1A
activation. Complete inhibition of such molecules caused a higher number of periodic oscillations
especially if compared with other mutations, such as those involving the PIP5K1C path.

RAP1A and ABG represented the most robust biological entities. Even ABG and PLC are in-
volved in the same path, their inhibition caused different results. PLC generated less useful con-
figurations than ABG. This discrepancy was due to the possibility to address all available upstream
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Mutated biological
entity

Aperiodic
config.

Useful config. (periodic)
No. of config. Percentage (%)

Golden model - 48,103,034 100

CXCR4 0 0 0
JAK3 45,772,250 350,076 0.73
JAK2 45,930,522 360,866 0.75
ABG 44,622,829 2,816,161 5.85
VAV1 0 0 0
PLC 43,896,648 1,405,068 2.92

RAC1 46,595,823 353,638 0.74
RHOA 46,594,446 354,192 0.74
CDC42 45,793,907 2,130,312 4.43

IP3 46,981,010 744,240 1.55
DAG 46,870,618 856,471 1.78
PLD1 0 0 0

PIP5K1C 41,013,525 89,317 0.19
CA 46,744,142 893,742 1.86

RASGRP1 43,882,176 1,405,567 2.92
PA 0 0 0

RAP1A 40,284,893 7,335,303 15.25
PIP2 39,659,171 31,674 0.07

RIAM 46,941,059 790,573 1.64
RASSF5 46,893,502 827,345 1.72

TLN1 46,708,041 792,511 1.65
FERMT3 47,071,579 649,062 1.35

Table 6.16. Assertion P2. Mutation analysis experimental results according to a tolerance δ = 30%.

packets (CXCR4 molecules) on JAK2/JAK3 when ABG is inhibited. Whenever ABG is active and
PLC is inhibited, ABG packets had to wait their lifetime expiration, since ABG packets cannot
change their target (PLC is not available).

Conclusions

According to the investigation of the periodic oscillation property, the mutation analysis underlined
that the leukocyte signaling network is (i) extremely sensitive to the path involving PIP5K1C and
(ii) robust in the path involving RASGRP1. Results also showed that biological entities JAK2/JAK3
and CDC42 are essential to guarantee the oscillation periodicity.

The analysis confirmed some biological insight. PIP5K1C has been found responsible for the
final states associated to affinity. RAP1A has been confirmed to be involved in leukocyte adhesion
process and not in affinity one.

CDC42, which acts as negative regulator in this network, has been computationally found in-
volved in ITGB2 periodic oscillation. However, as observed in literature, CDC42 has been found
involved in neutrophil chemotaxis, a biological process not directly associated with ITGB2. This
fact represent an interesting behavior to be further experimentally investigated.
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6.2 Colitis-associated Colon Cancer (CAC) Network

Introduction

Unlike previous section, which has mainly focused on investigating system dynamics from a re-
ductionist perspective, the present section provides an analysis based on a more holistic approach,
investigating connections between inflammation and tumorigenesis. Inflammation plays a relevant
role in the development and evolution of several cancer types, including colon cancer. In colon can-
cer, the administration of anti-inflammatory drugs showed a decreasing in its expression, in those
patients affected by familiar adenoma polyposis, acknowledging the connection between inflamma-
tion and cancer (Phillips et al. [93]). Due to inflammation, chronic inflamed tissues facilitate events
such as genetic mutations and alterations in apoptosis mechanism leading to cell survival and prolif-
eration. Therefore, inflammatory bowel disease (IBD) represents an important risk factor associated
with the development of colitis-associated colon cancer (CAC). Mainly produced by epithelial and
immune cells, cytokines revealed a role in the development of CAC.

In the context of CAC, studies showed that tumor necrosis factor alpha (TNF-α) (i) promotes
tumor initialization and progression in experimental colitis (Popivanova et a. [94]), and (ii) stimu-
lates the production of those molecules that mediate oxidative stress (Noguchi et al. [90], Szlosarek
et al. [105]). It is clear that strategies in blocking the TNF-α action represent basis therapies for
the IBD. In regard to transition from inflammatory microenvironment to malignant condition (Fig-
ure 6.7), the transcription factor NF-κB plays an important role in regulating immunological and
inflammatory responses (Ben-Neriah and Karin [6]).

Fig. 6.7. Under CAC, intestinal tissue is characterized by a continue expression of inflammatory
cytokines (IL-6 and TNF), as well as early mutations of gene encoding p53 (TP53) which fa-
vorite a continuous expression of NF-κB and increase in inflammation. This deterioration leads
to a barrier dysfunction (dysplasia, that is, presence of cells of an abnormal type) promoting
bacteria infiltration, and an additional increasing in inflammatory response. An inflamed mi-
croenvironment is also characterized by the expression of ROS involved in DNA damaging.
As result, mutation in APC gene encoding favorites the development of carcinoma (source:
http://www.nature.com/ni/journal/v17/n3/full/ni.3384.html).

Interleukin 6 (IL-6), a NF-κB induced cytokine, is another promoter of tumor growth (Griven-
nikov et al. [49]). Its action is regulated by transforming growth factor beta (TGF-β), acting as in-
hibitor for IL-6. TGF-β is an anti-tumor immune-response attenuator, promoting T cells (a subtype
of white blood cells) activity. Members of the interleukin 12 (IL-12) family, such as interleukin 12,
interleukin 23, and interleukin 27, show implications in development of colitis (Duerr et al. [31]).
Since all these cytokines participate in both inflammation and tumorigenesis, it is difficult to es-
tablish cytokines contribution to each step during the development of CAC. However, cytokines
targeting could represent a promising therapy in CAC.
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In order to investigate the role of inflammation in tumorigenesis, the analysis in this section
has been based on the CAC network developed by Lu et al. [80]. This work describes a complex
CAC network (Figure 6.8) analyzed both in-silico and in-vitro. It aimed at understanding dynamics
behind inflammation-associated tumorigenesis and identifying potential novel therapies. Provided
insight aimed at clarifying how molecular mechanisms lead to CAC using a refined boolean network
model related to the growth and survival of preneoplastic epithelial cells. Such a network model can
be decomposed into two main parts: the intestinal epithelial cells (IEC) part, which contains entities
related to the intracellular signaling, and a second part associated to the immune micro-environment,
which contains elements such as immune cells, cytokines and chemokines.

Fig. 6.8. The CAC Network. Each color represents a specific biological function. Cyan nodes belong
to the extracellular immune microenvironment. Yellow nodes mainly participate in inflammatory
signaling. Green nodes mainly mediate cell proliferation, while red nodes regulate cell survival.
Finally, purple nodes represent the output effects of the network model (proliferation and apoptosis).
Arrows represent activation (arrowhead) and inhibition (diamond).
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Table 6.17 shows the full name and the gene symbol associated to each node in the CAC net-
work.

Node name Gene symbol Full name
AKT AKT1/AKT2 v-akt murine thymoma viral oncogene homolog 1 / v-akt

murine thymoma viral oncogene homolog 2
APC APC adenomatous polyposis coli

ASK1 MAP3K5 apoptosis signal-regulating kinase 1 (also known as
mitogen-activated protein kinase kinase kinase 5)

ATM ATM ataxia telangiectasia mutated
BAX BAX BCL2-associated X protein

BCATENIN CTNNB1 beta-catenin
BCL2 BCL2 B-cell CLL/lymphoma 2

CASP3 CASP3 caspase 3, apoptosis-related cysteine peptidase
CASP8 CASP8 caspase 8, apoptosis-related cysteine peptidase
CASP9 CASP9 caspase 9, apoptosis-related cysteine peptidase
CCL2 CCL2 chemokine (C-C motif) ligand 2

CERAMIDE N/A ceramide
CFLIP CFLAR CASP8 and FADD-like apoptosis regulator
COX2 PTGS2 prostaglandin-endoperoxide synthase 2 (prostaglandin G/H

synthase and cyclooxygenase)
CTL N/A CD8+ cytotoxtic lymphocyte

CYCLIND1 CCND1 cyclin D1
CYTC CYCS cytochrome c, somatic

DC N/A dendritic cells
EP2 PTGER2 prostaglandin E receptor 2 (subtype EP2), 53kDa
ERK MAPK1/MAPK3 mitogen-activated protein kinase 1/ mitogen-activated pro-

tein kinase 3 (also known as ERK1 and ERK2)
FADD FADD Fas (TNFRSF6)-associated via death domain
FAS FAS Fas (TNF receptor superfamily, member 6)
FOS FOS FBJ murine osteosarcoma viral oncogene homolog

GP130 IL6ST interleukin 6 signal transducer (gp130, oncostatin M recep-
tor)

GSK3B GSK3B glycogen synthase kinase 3 beta
IAP XIAP/BIRC3/BIRC2 X-linked inhibitor of apoptosis / baculoviral IAP repeat

containing 3 / baculoviral IAP repeat containing 2
IFNG IFNG interferon, gamma
IKB NFKBIA/NFKBIB nuclear factor of kappa light polypeptide gene enhancer in

B-cells inhibitor, alpha/beta
IKK CHUK/IKBKB conserved helixloophelix ubiquitous kinase / inhibitor of

kappa light polypeptide gene enhancer in B-cells, kinase
beta (also known as IKK-alpha and IKK-beta)

IL10 IL10 interleukin 10
IL12 IL12A interleukin 12A
IL4 IL4 interleukin 4
IL6 IL6 interleukin 6 (interferon, beta 2)
JAK JAK2 Janus kinase 2
JNK MAPK8 mitogen-activated protein kinase 8
JUN JUN jun proto-oncogene
MAC N/A macrophages

MDM2 MDM2 Mdm2, p53 E3 ubiquitin protein ligase homolog (mouse)
continued . . .
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. . . continued
Node name Gene symbol Full name

MEK MAP2K1/MAP2K2 mitogen-activated protein kinase kinase 1 / mitogen-
activated protein kinase kinase 2 (also known as MEK1 and
MEK2)

MEKK1 MAP3K1 mitogen-activated protein kinase kinase kinase 1, E3 ubiq-
uitin protein ligase

MOMP N/A mitochondrial outer membrane permiabilization
NFKB NFKB1/NFKB2/RELA nuclear factor of kappa light polypeptide gene enhancer in

B-cells 1 (p105) / nuclear factor of kappa light polypep-
tide gene enhancer in B-cells 2 (p49/p100) / v-rel reticu-
loendotheliosis viral oncogene homolog A, nuclear factor
of kappa light polypeptide gene enhancer in B-cells 3, p65
(avian)

P21 CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1)
P53 TP53 tumor protein p53

PGE2 N/A prostaglandin E2
PI3K PIK3CA/PIK3CB phosphoinositide-3-kinase, catalytic, alpha polypeptide /

phosphoinositide-3-kinase, catalytic, beta polypeptide
PP2A PPP2CA/PPP2CB protein phosphatase 2, catalytic subunit, alpha isoform /

protein phosphatase 2, catalytic subunit, beta isozyme
PTEN PTEN phosphatase and tensin homolog
RAF RAF1 v-raf-1 murine leukemia viral oncogene homolog 1
RAS KRAS/HRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog / v-

Ha-ras Harvey rat sarcoma viral oncogene homolog
ROS N/A reactive oxygen species
S1P N/A Sphingosine-1-phosphate

SMAC DIABLO diablo, IAP-binding mitochondrial protein
SMAD SMAD2/SMAD3/SMAD4 SMAD family member 2/3/4
SMAD7 SMAD7 SMAD family member 7
SMASE SMPD1/SMPD2/SMPD4 sphingomyelin phosphodiesterase 1, acid lysosomal / sph-

ingomyelin phosphodiesterase 2, neutral membrane (neu-
tral sphingomyelinase) / sphingomyelin phosphodiesterase
4, neutral membrane (neutral sphingomyelinase-3)

SOCS SOCS1 suppressor of cytokine signaling 1
SOD SOD1/SOD2 superoxide dismutase 1, soluble / superoxide dismutase 2,

mitochondrial (also known as Cu/ZN-SOD and Mn-SOD)
SPHK1 SPHK1 sphingosine kinase 1
STAT3 STAT3 signal transducer and activator of transcription 3 (acute-

phase response factor)
TBID BID BH3 interacting domain death agonist
TGFB TGFB1/TGFB2 transforming growth factor, beta 1 / transforming growth

factor, beta 2
TGFR TGFBR2 transforming growth factor, beta receptor II (70/80kDa)
TH1 N/A type 1 T helper cells
TH2 N/A type 2 T helper cells

TNFA TNF tumor necrosis factor
TNFR TNFRSF1A tumor necrosis factor receptor superfamily, member 1A
TREG N/A regulatory T cells

Table 6.17: CAC network nodes supplied with their gene symbol and full name.
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Behaviors of Interest

Starting from Lu et al. [80], analysis involved the identification of which factors can influence
Proliferation and Apoptosis activities. Cell proliferation represents the process which results in an
increase in the number of cells, especially during tumorigenesis. Proliferation is defined by the
balance among cells division and cells loss (through death or differentiation).

In contrast, apoptosis represents the process which directs the cell self-destruction. It plays a
fundamental role in preventing uncontrolled cell growth and tumor development.

The investigation of Proliferation and Apoptosis activities involved four microenvironments,
as shown in Table 6.18, that is, non-inflammatory microenvironment (1), normal inflammation re-
sponse (2), pro-tumor microenvironment (3), pro-tumor microenvironment and P53 inactivation (4).

Each microenvironment has been analyzed according to synchronous and asynchronous updat-
ing policies. In general, in a model based on a synchronous updating policy, all entities change their
state value simultaneously at each time point, making tractable the analysis of very large networks.
However, the resulting model is characterized by a lower accuracy as in nature biological entities
take different times to perform their activities. In contrast, models based on asynchronous updating
policies provide a more accurate modeling of the natural phenomenon at the expense of a higher
complexity.

It is clear that the analysis of CAC network involved the investigation of new potential phar-
macological therapies, in order to identify which drugs could be used to reduce proliferation and/or
increase the apoptosis activity of cells in a pro-tumor microenvironment.

Experimental Conditions

According to Lu et al. [80], analysis and experimental observations involved four main microen-
vironments (conditions). Each microenvironment (Table 6.18) is characterized by a set of input
stimuli and a list of nodes knocked out, in particular:

Condition Initially On Initially Off Fixed On Fixed Off

Non-inflammatory
microenvironment

Prolifetation,
Apoptosis

APC

IL6, IL12, IL4, TH1,
TH2, IL10, TREG, IFNG,
MAC, CCL2, TGFB, CTL,

TNFA, PGE2, DC

Normal inflammation
response

DC
Prolifetation,

Apoptosis
APC

IL6, IL12, IL4, TH1,
TH2, IL10, TREG, IFNG,
MAC, CCL2, TGFB, CTL,

TNFA, PGE2
Pro-tumor

microenvironment
Prolifetation,

Apoptosis
DC

Pro-tumor
microenvironment and

P53 inactivation

Prolifetation,
Apoptosis

DC P53

Table 6.18. List of main microenvironments.

• A set of activated entities (stimuli) at the beginning of the simulation (Initially On).
• A set of deactivated entities at the beginning of the simulation (Initially Off ).
• A set of entities (stimuli) always kept active during the whole simulation (Fixed On).
• A set of entities always kept deactivated during the whole simulation (Fixed Off ).
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Non-inflammatory Microenvironment

A non-inflammatory microenvironment is characterized by the absence of inflammatory factors. In
order to simulate a non-inflammatory microenvironment, the state of all immune microenvironment
entities (cyan nodes) are fixed at OFF and the adenomatous polyposis coli (APC) is fixed at ON.
APC represents the precancerous intestinal epithelial cells, and its continuous expression suppresses
the β-catenin signaling (Morin et al. [86]).

Normal inflammation response

In a normal inflammatory response, dendritic cells (DCs) act as strong initializer and maintainer
of the immunity response (Rescigno and Di Sabatino. [96]). To simulate a normal inflammatory
response, the transitory activation of dendritic cells is performed through the initial activation of the
DC node (Init ON). The remaining settings are the same seen for the non-inflammatory microenvi-
ronment.

Pro-tumor microenvironment

To simulate a pro-tumor inflammatory microenvironment, the strongest tumor initializer DC is
fixed at ON. In an inflammatory microenvironment, it could be biologically explained as growth-
controlling factor of the precancerous IECs.
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Experimental Results

Experiments involved the attractors analysis according to each microenvironment. In literature, dis-
crete logic-based dynamical models are often analyzed in order to identify stable cycles of states.
These stable cycles, called attractors, represent the states in which biological networks dwell most
of the time. According to Kauffman [65] and Li et al. [77], attractors can be often linked to phe-
notypes. Phenotypes represent a set of observable characteristics (i.e., physiological properties and
morphology) associated to an organism and its development stage.

Depending on the adopted updating policy, the attractors analysis can show different results.
Usually, asynchronous updating policies show a larger set of states, resulting in more complex
attractors. This complexity can be easily recognized by observing the number of states and their
interconnections which compose an attractor. An attractor can be composed by a single state (self
loop, also called steady state), or by a set of states (simple loop or complex loop). In a simple loop
each state has a single successor state. In a complex loop each state can have two or more successor
states.

Figure 6.9 shows the different attractors complexity achievable through synchronous and asyn-
chronous updating policies.

Fig. 6.9. Attractors complexity differentiation among synchronous and asynchronous updating poli-
cies.

As defined, attractors represent the system response under specific conditions. In this context,
SyQUAL has been compared with the most representative tools for qualitative modeling and simula-
tion of biological systems in literature, such as BoolNet, BooleanNet, and GINsim. These tools share
common features with SyQUAL. They support SBML qual as input model and both synchronous
and asynchronous updating policies. BoolNet, BooleanNet, and GINsim rely on the GA and ROA up-
dating policies which do not require any prior information (Section 2.4.2 - Updating Policies). The
Cell Collective, ChemChains, and CellNetAnalyzer (CNA) have been excluded for the following
reasons:

• The Cell Collective does not support any SBML description as input format and it does not
provide any asynchronous updating policy. Moreover, some issues have been identified during
simulations, leading to a wrong modeling of the CAC network.

• CellNetAnalyzer requires specific input formats, based on complex internal rules. They turned
up to be hard to prepare, especially for large networks.
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Each tool feature in summarized in Table 6.19.
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BoolNet • • M •
GINsim • • M • •

BooleanNet • • M •
SyQUAL • • • A • •

Table 6.19. Table shows a comparison in term of features and analysis between SyQUAL and the
tools previously listed. The marker • represents the support for a specific feature/analysis. Robust-
ness analysis can be performed manually (M) or automatically (A).



6.2 Colitis-associated Colon Cancer (CAC) Network 97

Synchronous Updating Policy

Attractors analysis has been performed according to each microenvironment, that is, non-inflammatory
microenvironment (1), normal inflammation response (2), pro-tumor microenvironment (3), pro-
tumor microenvironment and P53 inactivation (4).

Table 6.20 shows results obtained through the synchronous updating policy in terms of simu-
lation time, the corresponding standard deviation (for a batch of one hundred executions), and the
number of identified attractors, according to each microenvironment and tool.

Tool Microenv.
Timing in ms

No. of attractors
Exec. time Standard Dev.

BoolNet

1 1.16 0.51 1
2 1.02 0.47 1
3 1.10 0.56 6
4 1.22 0.66 6

GINsim

1 3,000.00 1,000.00 1
2 3,000.00 1,000.00 1
3 Out of memory
4 Out of memory

BooleanNet

1 11.59 1.64 1
2 11.58 1.64 1
3 15.07 0.23 6
4 16.340 4.79 6

SyQUAL

1 11.46 1.69 1
2 10.97 1.56 1
3 13.03 2.04 6
4 12.21 1.87 6

Table 6.20. A quantitative overview of attractors analysis according to the synchronous updating
policy. Table reports the execution time and number of identified attractors in agreement with each
microenvironment and tool.

Table 6.20 underlined that all tools (except for GINsim which does not support the network
complexity) led to the identification of the same set of attractors for each microenvironment. This
was expected as all tools are based on the same strategy (synchronous updating policy). It must
be clarified that the synchronous analysis has been used as fundamental testbench to evaluate the
quality of SyQUAL results, since all compared tools used the same updating method.

Results showed that SyQUAL reached the same accuracy of BoolNet (a reference tool for qual-
itative attractor investigation), identifying the same set of attractors (Table 6.21), confirming the
validity of modeling and simulation of Biological Systems through EDA technologies.

Identified attractors (Table 6.20) are listed in Table 6.21.
Each microenvironment showed a different response and attractors complexity, due to the pe-

culiar experimental conditions.



Microenvironment Attactors
Non-inflammatory
microenvironment 1. IKB, GSK3B, APC

Normal inflammation
response 1. IKB, GSK3B, APC

Pro-tumor
microenvironment

1. CCL2, IKK, CFLIP, AKT, CYCLIND1, Proliferation, IL6, PI3K,
DC, MEK, SOD, TH2, SMAD7, IL12, IL10, GP130, IL4, JAK,
SPHK1, NFKB, BCL2, RAF, RAS, BCATENIN, IAP, ERK, S1P,
FOS

2. CCL2, IKK, SOCS, CFLIP, AKT, CYCLIND1, Proliferation,
IL6, PI3K, DC, MEK, SOD, TH2, STAT3, SMAD7, IL12, IL10,
GP130, IL4, SPHK1, NFKB, BCL2, RAF, RAS, BCATENIN, IAP,
ERK, S1P, FOS

3. CCL2, IKK, SOCS, CFLIP, AKT, CYCLIND1, Proliferation,
IL6, PI3K, DC, MEK, SOD, TH2, STAT3, SMAD7, IL12,
IL10, GP130, IL4, JAK, SPHK1, NFKB, BCL2, RAF, RAS,
BCATENIN, IAP, ERK, S1P, FOS

4. CCL2, IKK, CFLIP, AKT, CYCLIND1, Proliferation, IL6, PI3K,
DC, MEK, SOD, TH2, STAT3, SMAD7, IL12, IL10, GP130, IL4,
JAK, SPHK1, NFKB, BCL2, RAF, RAS, BCATENIN, IAP, ERK,
S1P, FOS

5. CCL2, IKK, SOCS, CFLIP, AKT, CYCLIND1, Proliferation, IL6,
PI3K, DC, MEK, SOD, TH2, SMAD7, IL12, IL10, GP130, IL4,
SPHK1, NFKB, BCL2, RAF, RAS, BCATENIN, IAP, ERK, S1P,
FOS

6. CCL2, IKK, CFLIP, AKT, CYCLIND1, Proliferation, IL6, PI3K,
DC, MEK, SOD, TH2, SMAD7, IL12, IL10, GP130, IL4, SPHK1,
NFKB, BCL2, RAF, RAS, BCATENIN, IAP, ERK, S1P, FOS

Pro-tumor
microenvironment and

P53 inactivation

1. CCL2, IKK, SOCS, CFLIP, AKT, CYCLIND1, Proliferation,
IL6, PI3K, DC, MEK, SOD, TH2, STAT3, SMAD7, IL12, IL10,
GP130, IL4, SPHK1, NFKB, BCL2, RAF, RAS, BCATENIN, IAP,
ERK, S1P, FOS

2. CCL2, IKK, SOCS, CFLIP, AKT, CYCLIND1, Proliferation, IL6,
PI3K, DC, MEK, SOD, TH2, SMAD7, IL12, IL10, GP130, IL4,
SPHK1, NFKB, BCL2, RAF, RAS, BCATENIN, IAP, ERK, S1P,
FOS

3. CCL2, IKK, SOCS, CFLIP, AKT, CYCLIND1, Proliferation,
IL6, PI3K, DC, MEK, SOD, TH2, STAT3, SMAD7, IL12,
IL10, GP130, IL4, JAK, SPHK1, NFKB, BCL2, RAF, RAS,
BCATENIN, IAP, ERK, S1P, FOS

4. CCL2, IKK, CFLIP, AKT, CYCLIND1, Proliferation, IL6, PI3K,
DC, MEK, SOD, TH2, SMAD7, IL12, IL10, GP130, IL4, JAK,
SPHK1, NFKB, BCL2, RAF, RAS, BCATENIN, IAP, ERK, S1P,
FOS

5. CCL2, IKK, CFLIP, AKT, CYCLIND1, Proliferation, IL6, PI3K,
DC, MEK, SOD, TH2, STAT3, SMAD7, IL12, IL10, GP130, IL4,
JAK, SPHK1, NFKB, BCL2, RAF, RAS, BCATENIN, IAP, ERK,
S1P, FOS

6. CCL2, IKK, CFLIP, AKT, CYCLIND1, Proliferation, IL6, PI3K,
DC, MEK, SOD, TH2, SMAD7, IL12, IL10, GP130, IL4, SPHK1,
NFKB, BCL2, RAF, RAS, BCATENIN, IAP, ERK, S1P, FOS

Table 6.21. A qualitative overview of attractors analysis according to the synchronous updating
policy. Table reports the list of identified attractors for each microenvironment.
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Next paragraphs report the quantitative analysis of the activity levels of a set of biological
entities of interest, according to each microenvironment.

Non-Inflammatory Microenvironment. Attractor (Table 6.21) showed a suppression of β-
catenin (BCATENIN), as result of the constant expression of APC. Transcription factors such as
STAT3 (STAT3) and NF-κB (NFKB) are considered, with β-catenin (BCATENIN), distinctive char-
acteristics of CAC (Morin et al. [86], Kojima et al. [68], Atreya and Neurath [3], Yu, Pardoll and
Jove [113]). It is clear that without any inflammatory signal, the Proliferation activity level (Ta-
ble 6.22) suggests that IECs tend to stay in a resting state (no proliferation).
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Table 6.22. Table reports the contribution of the entities expressed as activity levels (Section 5.1 -
Results). Proliferation showed no activity, suggesting a resting state for IECs.

Normal Inflammation Response. Despite the non-inflammatory microenvironment, the nor-
mal inflammation response is characterized by an initial activation of dendritic cells (DC). Even
considering an initial presence of dendritic cells, attractor showed the same behavior observed un-
der the non-inflammatory microenvironment, suggesting a resting state for IECs. Due to the initial
activation of DC, Table 6.23 showed a feeble expression of DC.
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Table 6.23. Table reports the contribution of the entities expressed as activity levels (Section 5.1 -
Results). Even with an initial activation of dendritic cells (DC), Proliferation continued to show no
particular activity.

As known in literature, the inflammatory microenvironment is characterized by the expression
of different types of immune cells. Investigating how different immune microenvironments can
influence IECs represents an interesting analysis. As a result of this analysis, Table 6.24 shows
how a mixing of expressed immune cells affected IECs and the activity levels of Proliferation and
Apoptosis.
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• 1 0.04 0.04 0.04 0 0.9 0.04 0.98 0 0.98 0 0.49 1

• 1 0.79 0.82 0.47 0.92 0.02 0.95 0.89 0.92 0.02 0.32 0.22 2

• 1 0.87 0.85 0.48 0.01 0.02 0.98 0.98 0.98 0.94 0.8 0 3

• 1 0.86 0.88 0.48 0.98 0 0.98 0.94 0.98 0 0.36 0.02 4

• 1 0.83 0.85 0.47 0.92 0.02 0.95 0.89 0.92 0.02 0.38 0.02 5

• 1 0.05 0.05 0.05 0 0.98 0.05 0 0 0.98 0 0.48 6

• • 1 0.82 0.84 0.48 0.92 0.02 0.98 0.98 0.98 0.02 0.37 0.14 7

• • 1 0.85 0.88 0.48 0.98 0 0.98 0.94 0.98 0 0.36 0.04 8

• • 1 0.02 0.02 0.02 0 0.92 0.02 0.98 0 0.98 0 0.87 9

• • 1 0.87 0.86 0.48 0.92 0.02 0.98 0.98 0.98 0.02 0.42 0.02 10

• • 1 0.87 0.85 0.48 0 0.02 0.98 0.98 0.98 0.98 0.82 0 11

• • 1 0.86 0.84 0.48 0 0.98 0.98 0.98 0.98 0.98 0.72 0 12

• • 1 0.04 0.04 0.04 0 0.9 0.04 0.98 0 0.98 0 0.64 13

• • • 1 0.34 0.33 0.48 0 0.02 0.98 0.98 0.98 0.98 0.21 0.53 14

• • • 1 0.22 0.21 0.48 0 0.98 0.98 0.98 0.98 0.98 0.01 0.49 15

• • • 1 0.86 0.84 0.48 0 0.02 0.98 0.98 0.98 0.98 0.79 0.01 16

• • 1 0.02 0.02 0.02 0 0.98 0.02 0 0 0.98 0 0.87 17

Table 6.24. Effects of different immune cells expression on IECs. Table reports activity levels of
cytokines, as well as the most relevant activity levels of Apoptosis and Proliferation. The bullet
notation (•) represents an expressed immune cell.

By analyzing the influence of mixed expressed immune cells on IECs, results (Table 6.24)
confirmed experimental observations.

The continuous expression of DC, which can be biologically interpreted as a constant activa-
tion of dendritic cells, contributed to produce one of the most pro-proliferation microenvironments
(rows 3 and 11), even combined with the activation of TH2. Experimental observation showed that
transient activation of dendritic cells “triggered” controlled inflammatory reactions (Fiocchi [36]).
A constant activation of dendritic cells led to chronic inflammation in IBD (Hart et al. [52]), in-
creasing the growth and survival of IECs (MacDonald [81]).

The constant expression of MAC or TH1 led Proliferation to rise its activity at a disadvantage
of Apoptosis (rows 4 and 5).

The stable expression of TH2 or TREG produced an important increment of the Apoptosis ac-
tivity (rows 1 and 6). Considering the TREG expression, IL10 and TGFB showed an increasing
activity, in contrast with IL6 and TNFA. Experimental observations proved that the T Cell regu-
latory activity reduces the tumor development through (i) the production of immune suppressive
cytokines, such as TGF-β and IL-10, and (ii) the reduction of pro-inflammatory cytokines, such as
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IL-6 and TNF-α (Erdman et al. [32]). The combined expression of TREG-CTL or TH2-CTL led to
the most anti-tumorigenic response (row 9 and 17). Clinical evidences showed that CTL plays a role
in intestinal inflammation and promotion of tumor growth (Waldner and Neurath [110]), in contrast
with previous studies in which CTL is usually associated with an encouraging prognosis in sporadic
colon cancer (Naito et al. [88]). These combinations indicated a restoring of the cytotoxic activity
of CTL, leading to an increasing of the immune surveillance activity.

Pro-tumor Microenvironment. Characterized by a constant expression of dendritic cells (DCs),
attractors showed a Proliferation predominance and a complete Apoptosis suppression (Table 6.25).
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Table 6.25. Table reports the contribution of the entities expressed as activity levels (Section 5.1 -
Results). With a constant activation of dendritic cells (DC), Proliferation showed a high activity.

In a pro-tumor microenvironment, the activity of transcription factors STAT3 and NFKB was
somewhat higher than in non-inflammatory microenvironment and normal inflammatory response.
Experimental observations showed that STAT3 and NFKB are high expressed under inflammatory
stimuli (Greten et al. [48], Grivennikov et al. [49]).

Pro-tumor Microenvironment and P53 Inactivation. As described in literature, P53, known
as TP53, acts as tumor suppressor, playing a fundamental role in the Apopotosis process (Zilfou et
al. [114]).

As result of P53 deactivation, attractors highlighted once more a Proliferation predominance
and a complete Apoptosis suppression (Table 6.26). However, Proliferation slightly rose its activity
if compared with the simple pro-tumor microenvironment.
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Table 6.26. Table reports the contribution of the entities expressed as activity levels (Section 5.1 -
Results). With a constant activation of dendritic cells (DC) and the deactivation of P53, Proliferation
showed a higher activity compared to Table 6.25.

Influencing Proliferation and Apoptosis using Drugs in a Pro-tumor Microenviron-
ment. As observed in pro-tumor microenvironment, the continue expression of dendritic cells
(DCs) produced a predominance of Proliferation, with a complete deactivation of the Apoptosis
activity (Table 6.25).

In general, drugs play an important role to restore a normal condition. Consequently, this para-
graph investigated how drugs could be used to restore a normal microenvironment or at least to
reduce the Proliferation activity.
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Table 6.27 reported how the Systematic Knock Out (Section 5.1 - Drug Knowledge-based Knock
Out) has been used to explore rational new immune therapies.
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1 0 0.99 0.85 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.8 0 BCL2
2 0 0.99 0.85 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.8 0 COX2
3 0 0.99 0.02 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.8 0 COX2, IKK
4 0 0.99 0.85 0.48 0 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.82 0 COX2, TNFA
5 0 0.99 0.5 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0 0.32 ERK
6 0 0.99 0.85 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0 0 FOS
7 0 0.99 0.86 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.81 0 GSK3B
8 0 0.99 0.02 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.8 0 IKK
9 0 0.99 0.84 0 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.8 0.01 JAK
10 0 0.99 0.5 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0 0.32 MEK
11 0 0.99 0.83 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0 0.01 RAF
12 0 0.99 0.85 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.8 0 SMASE
13 0 0.99 0.85 0.48 - 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.82 0 TNFA
14 0 0.99 0.86 0.48 0.01 0.96 0 - 0.98 0.98 0.98 0.96 1 0.82 0 TGFB
15 0 0.99 0.85 0.48 0 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.82 0 CCL2

Table 6.27. Alteration of entities activity levels through Systematic Knock Out (Section 5.1 - Drug
Knowledge-based Knock Out). On the right side, biological entities knocked out.

Results in Table 6.27 showed a restoring of the Apoptosis activity through the inhibition of ERK
(row 5) or MEK (row 10). The ERK and MEK inhibition has been accomplished using the following
drugs:

• ERK inhibitors:
– Purvalanol experimental drug [https://www.drugbank.ca/drugs/DB02733].

• MEK inhibitors:
– Cobimetinib, approved drug [https://www.drugbank.ca/drugs/DB05239].

Cobimetinib is a potent and highly selective small molecule inhibitor of mitogen-activated
protein kinase kinase 1 (MAP2K1 or MEK1), and central components of the RAS/RAF/MEK/ERK
signal transduction pathway. It is used in combination with vemurafenib for the treatment
of patients with unresectable or metastatic BRAF V600 mutation-positive melanoma.

– Bosutinib, approved drug [https://www.drugbank.ca/drugs/DB06616].
Bosutinib is a Bcr-Abl kinase inhibitor for the treatment of Philadelphia chromosome-
positive (Ph+) chronic myelogenous leukemia (CML).

– Trametinib, approved drug [https://www.drugbank.ca/drugs/DB08911].
Trametinib dimethyl sulfoxide is a kinase inhibitor.
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Influencing Proliferation and Apoptosis using a Mix of Drugs in a Pro-tumor Microen-
vironment. Despite the previous analysis, this paragraph explored the effects of combining drugs
in order to restore a normal microenvironment or at least to reduce the Proliferation activity.

Table 6.28 showed how the Combinatorial Knock Out (Section 5.1 - Drug Knowledge-based
Knock Out) has been used to explore rational new immune therapies. Table reported only those
results with an additive influence (compared with the Systematic Knock Out) of Apoptosis activity.
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1 0 0.99 0.47 0 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0 0.38 ERK, JAK
2 0 0.99 0.47 0 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0 0.38 JAK, MEK
3 0 0.99 0.49 0 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.01 0.35 JAK, RAF
4 0 0.99 0.02 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0 0.34 IKK, ERK
5 0 0.99 0.02 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0 0.34 IKK, MEK

Table 6.28. Alteration of entities activity levels through Combinatorial Knock Out (Section 5.1 -
Drug Knowledge-based Knock Out). On the right side, biological entities knocked out.

Results in Table 6.28 showed a restoring and increasing of the Apoptosis activity compared
with Table 6.27 (row 5 and 10). This has been accomplished through the combined inhibition of
ERK-JAK, ERK-IKK, MEK-JAK, MEK-IKK, or RAF-JAK.

Inhibitors listed below are reported only for JAK, IKK, and RAF, since MEK and ERK inhibitors
have been already reported in the previous paragraph (Influencing Proliferation and Apoptosis using
Drugs in a Pro-tumor Microenvironment).

• JAK inhibitors:
– Ruxolitinib approved drug [https://www.drugbank.ca/drugs/DB08877].

Ruxolitinib is a janus-associated kinase inhibitor indicated to treat bone marrow cancer,
specifically intermediate or high-risk myelofibrosis.

• IKK inhibitors:
– Acetylcysteine approved drug [https://www.drugbank.ca/drugs/DB06151].

Acetylcysteine is commonly used in individuals with renal impairment and in treating mild
to moderate traumatic brain injury including ischemic brain injury.

• RAF inhibitors:
– Sorafenib, approved and investigational drug [https://www.drugbank.ca/drugs/DB00398].

Sorafenib (rINN) is a drug approved for the treatment of advanced renal cell carcinoma
(primary kidney cancer). Sorafenib is a small molecular inhibitor of Raf kinase, PDGF
(platelet-derived growth factor), VEGF receptor 2 & 3 kinases and c Kit the receptor for
Stem cell factor.

– Regorafenib, approved drug [https://www.drugbank.ca/drugs/DB08896].
Regorafenib is an inhibitor of multiple kinases. It is used for the treatment of metastatic
colorectal cancer and advanced gastrointestinal stromal tumors.

– Dabrafenib, approved drug [https://www.drugbank.ca/drugs/DB08912].
Dabrafenib mesylate is a reversible ATP-competitive kinase inhibitor and targets the MAPK
pathway.
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Influencing Proliferation and Apoptosis using Drugs in a Pro-tumor Microenviron-
ment and P53 Inactivation. As observed in pro-tumor microenvironments with the deactivation
of P53, the continue expression of dendritic cells (DCs) produced a predominance of Proliferation,
with a complete deactivation of the Apoptosis activity (Table 6.26).

In this case, the analysis investigated how drugs could be used to restore a normal microenvi-
ronment or at least to reduce the Proliferation activity under a complete deactivation of P53.

Table 6.29 reported how the Systematic Knock Out (Section 5.1 - Drug Knowledge-based Knock
Out) has been used to explore rational new immune therapies.
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1 0 0.99 0.86 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.84 0 BCL2
2 0 0.99 0.86 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.84 0 COX2
3 0 0.99 0.02 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.84 0 COX2, IKK
4 0 0.99 0.86 0.48 0 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.84 0 COX2, TNFA
5 0 0.99 0.86 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0 0 ERK
6 0 0.99 0.86 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0 0 FOS
7 0 0.99 0.86 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.84 0 GSK3B
8 0 0.99 0.02 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.84 0 IKK
9 0 0.99 0.85 0 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.82 0.01 JAK
10 0 0.99 0.86 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0 0 MEK
11 0 0.99 0.86 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.01 0 RAF
12 0 0.99 0.86 0.48 0.01 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.84 0 SMASE
13 0 0.99 0.86 0.48 - 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.84 0 TNFA
14 0 0.99 0.86 0.48 0.01 0.96 0 - 0.98 0.98 0.98 0.96 1 0.84 0 TGFB
15 0 0.99 0.86 0.48 0 0.94 0 0.02 0.98 0.98 0.98 0.94 1 0.84 0 CCL2

Table 6.29. Alteration of entities activity levels through Systematic Knock Out (Section 5.1 - Drug
Knowledge-based Knock Out). On the right side, biological entities knocked out.

Results in Table 6.29 highlighted the fundamental role of P53 in cell survival (Zilfou et al.
[114]). Considering the complete deactivation of P53, no inhibition led to a notable restoring of the
Apoptosis activity. Only JAK inhibition showed a slightly increment of the Apoptosis activity.

Influencing Proliferation and Apoptosis using a Mix of Drugs in a Pro-tumor Microen-
vironment and P53 Inactivation. This paragraph extended the analysis performed in “Influ-
encing Proliferation and Apoptosis using a Mix of Drugs in a Pro-tumor Microenvironment” by
considering the complete deactivation of P53. In this case, analysis aimed at investigating potential
combination of drugs to improve obtained showed in Table 6.29.

Table 6.30 showed how the Combinatorial Knock Out (Section 5.1 - Drug Knowledge-based
Knock Out) has been used to explore rational new immune therapies. Table reported only those
results with an additive influence (compared with the Systematic Knock Out) of Apoptosis activity.

Even through a combination of drugs, results in Table 6.30 showed no significant increment in
Apoptosis activity, confirming yet again the crucial role of P53 in cell survival. Only the combined
inhibition of IKK-JAK led to a slightly increment of the Apoptosis activity compared with Table 6.29
(row 9).
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Table 6.30. Alteration of entities activity levels through Combinatorial Knock Out (Section 5.1 -
Drug Knowledge-based Knock Out). On the right side, biological entities knocked out.
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Asynchronous Updating Policy.

Attractors analysis has been performed according to each microenvironment, that is, non-inflammatory
microenvironment (1), normal inflammation response (2), pro-tumor microenvironment (3), pro-
tumor microenvironment and P53 inactivation (4).

All previous analyses reported in “Synchronous Updating Policy” are now performed according
to the asynchronous updating policy. Table 6.31 showed results obtained through the asynchronous
updating policy in terms of simulation time, the corresponding standard deviation (for a batch of one
hundred executions), and the number of identified attractors, according to each microenvironment
and tool.

Tool Microenv. Updating policy
Timing in ms

No. of attractors
Exec. time Standard Dev.

BoolNet

1 GA 5.45 1.37 1
2 GA 5.02 0.80 1
3 GA 15.41 31.73 6
4 GA 4.67 0.95 6

GINsim

1 GA 3,000.00 1,000.00 1
2 GA 3,000.00 1,000.00 1
3 GA Out of memory
4 GA Out of memory

BooleanNet

1 GA 11,499.89 493.73 1
2 GA 10,560.72 207.89 1
3 GA 12,023.21 227.93 6
4 GA 11,957.15 216.84 6

SyQUAL

1 Time-delayed 10.43 1.87 1
2 Time-delayed 11.60 1.92 1
3 Time-delayed 12.38 1.49 6
4 Time-delayed 13.82 1.71 6

Table 6.31. A quantitative overview of attractors analysis according to the asynchronous updating
policy. Table reports the execution time and number of identified attractors in agreement with each
microenvironment and tool. Despite synchronous updating policy, asynchronous analysis involved
different updating policies. In ROA (Chapter 2 - Updating Policies), all nodes are updated at the
same time step, but in a random order, such that no node is updated twice in the same time step.
In GA (Chapter 2 - Updating Policies), a randomly selected node is updated at each time step. In
Time-delayed (Section 4.4), each node has a pre-selected delay time, being activated at a specific
time.

Table 6.31 underlined that all tools (except for GINsim) led to the identification of same attrac-
tors. Even based on different asynchronous updating policies, SyQUAL and BoolNet showed (for
each microenvironment) the same set of attractors.

Even analyzing the required amount of execution time, BoolNet and SyQUAL resulted compa-
rable. In contrast, GINsim and BooleanNet showed a higher request of execution time.

Identified attractors using SyQUAL (Table 6.31) are listed in Table 6.32. Each microenvironment
showed a different response and attractors complexity, due to the peculiar experimental conditions.



Microenvironment Attactors
Non-inflammatory
microenvironment 1. IKB, GSK3B, APC

Normal inflammation
response 1. IKB, GSK3B, APC

Pro-tumor
microenvironment

1. CCL2, IKK, SOCS, CFLIP, AKT, CYCLIND1, Proliferation, IL6,
PI3K, DC, MEK, SOD, TH2, SMAD7, IL12, IL10, GP130, IL4,
SPHK1, NFKB, BCL2, RAF, RAS, BCATENIN, IAP, ERK, S1P,
FOS

2. CCL2, IKK, SOCS, CFLIP, AKT, CYCLIND1, Proliferation,
IL6, PI3K, DC, MEK, SOD, TH2, STAT3, SMAD7, IL12,
IL10, GP130, IL4, JAK, SPHK1, NFKB, BCL2, RAF, RAS,
BCATENIN, IAP, ERK, S1P, FOS

3. CCL2, IKK, CFLIP, AKT, CYCLIND1, Proliferation, IL6, PI3K,
DC, MEK, SOD, TH2, SMAD7, IL12, IL10, GP130, IL4, SPHK1,
NFKB, BCL2, RAF, RAS, BCATENIN, IAP, ERK, S1P, FOS

4. CCL2, IKK, SOCS, CFLIP, AKT, CYCLIND1, Proliferation,
IL6, PI3K, DC, MEK, SOD, TH2, STAT3, SMAD7, IL12, IL10,
GP130, IL4, SPHK1, NFKB, BCL2, RAF, RAS, BCATENIN, IAP,
ERK, S1P, FOS

5. CCL2, IKK, CFLIP, AKT, CYCLIND1, Proliferation, IL6, PI3K,
DC, MEK, SOD, TH2, SMAD7, IL12, IL10, GP130, IL4, JAK,
SPHK1, NFKB, BCL2, RAF, RAS, BCATENIN, IAP, ERK, S1P,
FOS

6. CCL2, IKK, CFLIP, AKT, CYCLIND1, Proliferation, IL6, PI3K,
DC, MEK, SOD, TH2, STAT3, SMAD7, IL12, IL10, GP130, IL4,
JAK, SPHK1, NFKB, BCL2, RAF, RAS, BCATENIN, IAP, ERK,
S1P, FOS

Pro-tumor
microenvironment and

P53 inactivation

1. CCL2, IKK, SOCS, CFLIP, AKT, CYCLIND1, Proliferation, IL6,
PI3K, DC, MEK, SOD, TH2, SMAD7, IL12, IL10, GP130, IL4,
SPHK1, NFKB, BCL2, RAF, RAS, BCATENIN, IAP, ERK, S1P,
FOS

2. CCL2, IKK, SOCS, CFLIP, AKT, CYCLIND1, Proliferation,
IL6, PI3K, DC, MEK, SOD, TH2, STAT3, SMAD7, IL12,
IL10, GP130, IL4, JAK, SPHK1, NFKB, BCL2, RAF, RAS,
BCATENIN, IAP, ERK, S1P, FOS

3. CCL2, IKK, CFLIP, AKT, CYCLIND1, Proliferation, IL6, PI3K,
DC, MEK, SOD, TH2, SMAD7, IL12, IL10, GP130, IL4, SPHK1,
NFKB, BCL2, RAF, RAS, BCATENIN, IAP, ERK, S1P, FOS

4. CCL2, IKK, SOCS, CFLIP, AKT, CYCLIND1, Proliferation,
IL6, PI3K, DC, MEK, SOD, TH2, STAT3, SMAD7, IL12, IL10,
GP130, IL4, SPHK1, NFKB, BCL2, RAF, RAS, BCATENIN, IAP,
ERK, S1P, FOS

5. CCL2, IKK, CFLIP, AKT, CYCLIND1, Proliferation, IL6, PI3K,
DC, MEK, SOD, TH2, SMAD7, IL12, IL10, GP130, IL4, JAK,
SPHK1, NFKB, BCL2, RAF, RAS, BCATENIN, IAP, ERK, S1P,
FOS

6. CCL2, IKK, CFLIP, AKT, CYCLIND1, Proliferation, IL6, PI3K,
DC, MEK, SOD, TH2, STAT3, SMAD7, IL12, IL10, GP130, IL4,
JAK, SPHK1, NFKB, BCL2, RAF, RAS, BCATENIN, IAP, ERK,
S1P, FOS

Table 6.32. A qualitative overview of attractors analysis according to the asynchronous updating
policy. Table reports the list of identified attractors for each microenvironment.
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Next paragraphs report the quantitative analysis of the activity level of a set of biological enti-
ties of interest, according to each microenvironment.

Non-Inflammatory Microenvironment. Results confirmed what observed during the syn-
chronous analysis. Attractor showed a suppression of β-catenin (BCATENIN), as result of the con-
stant expression of APC. Transcription factors STAT3 (STAT3) and NF-κB (NFKB) are suppressed
as well, confirming what observed experimentally.

It is clear that without any inflammatory signal, the Proliferation activity level (Table 6.33)
suggests that IECs tend to stay in a resting state (no proliferation).
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Table 6.33. Table reports the contribution of the entities expressed as activity levels (Section 5.1 -
Results). Proliferation showed no activity, suggesting a resting state for IECs.

Normal Inflammation Response. Even through an initial activation of dendritic cells (DC),
attractor showed the same behavior as observed under the non-inflammatory microenvironment. In
this case, Table 6.34 showed a greater activation of DC compared with the equivalent synchronous
due to the different strategy used to activate/deactivate biological entities.
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Table 6.34. Table reports the contribution of the entities expressed as activity levels (Section 5.1 -
Results). Even with an initial activation of dendritic cells (DC), Proliferation continued to show no
particular activity.

As proposed for the synchronous analysis, Table 6.35 shows how a mixing of expressed im-
mune cells affected IECs and the activity levels of Proliferation and Apoptosis, according to the
asynchronous updating policy. Results confirmed the same trends observed during the synchronous
analysis.

The continuous expression of DC, which can be biologically interpreted as a constant activa-
tion of dendritic cells, contributed to produce one of the most pro-proliferation microenvironments
(rows 3 and 12), even combined with the activation of TH2. Experimental observation showed that
transient activation of dendritic cells “triggered” controlled inflammatory reactions (Fiocchi [36]).
A constant activation of dendritic cells led to chronic inflammation in IBD (Hart et al. [52]), in-
creasing the growth and survival of IECs (MacDonald [81]).
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• 1 0.04 0.04 0.04 0 0.9 0.04 0.98 0 0.98 0 0.49 1

• 1 0.79 0.82 0.47 0.92 0.02 0.95 0.89 0.92 0.02 0.32 0.22 2

• 1 0.87 0.85 0.48 0.01 0.02 0.98 0.98 0.98 0.94 0.8 0 3

• 1 0.86 0.88 0.48 0.98 0 0.98 0.94 0.98 0 0.36 0.02 4

• 1 0.83 0.85 0.47 0.92 0.02 0.95 0.89 0.92 0.02 0.38 0.02 5

• 1 0.05 0.05 0.05 0 0.98 0.05 0 0 0.98 0 0.48 6

• • 1 0.82 0.84 0.48 0.92 0.02 0.98 0.98 0.98 0.02 0.37 0.14 7

• • 1 0.85 0.88 0.48 0.98 0 0.98 0.94 0.98 0 0.36 0.04 8

• • 1 0.02 0.02 0.02 0 0.92 0.02 0.98 0 0.98 0 0.87 9

• • 1 0.02 0.02 0.02 0 0.98 0.02 0 0 0.98 0 0.87 10

• • 1 0.87 0.86 0.48 0.92 0.02 0.98 0.98 0.98 0.02 0.42 0.02 11

• • 1 0.87 0.85 0.48 0 0.02 0.98 0.98 0.98 0.98 0.82 0 12

• • 1 0.86 0.84 0.48 0 0.98 0.98 0.98 0.98 0.98 0.72 0 13

• • • 1 0.34 0.33 0.48 0 0.02 0.98 0.98 0.98 0.98 0.21 0.53 14

• • • 1 0.22 0.21 0.48 0 0.98 0.98 0.98 0.98 0.98 0.01 0.49 15

• • • 1 0.86 0.84 0.48 0 0.02 0.98 0.98 0.98 0.98 0.79 0.01 16

Table 6.35. Effects of different immune cells expression on IECs. Table reports activity levels of
cytokines, as well as the most relevant activity levels of Apoptosis and Proliferation. The bullet
notation (•) represents an expressed immune cell.

The constant expression of MAC or TH1 led Proliferation to rise its activity at a disadvantage
of Apoptosis (rows 4 and 5).

The stable expression of TH2 or TREG produced an important increment of the Apoptosis ac-
tivity (rows 1 and 6). Considering the TREG expression, IL10 and TGFB showed an increasing
activity, in contrast with IL6 and TNFA. Experimental observations proved that the T Cell regu-
latory activity reduced the tumor development through (i) the production of immune suppressive
cytokines, such as TGF-β and IL-10, and (ii) the reduction of pro-inflammatory cytokines, such as
IL-6 and TNF-α (Erdman et al. [32]). The combined expression of TREG-CTL or TH2-CTL led to
the most anti-tumorigenic response (row 9 and 10). Clinical evidences showed that CTL plays a role
in intestinal inflammation and promotion of tumor growth (Waldner and Neurath [110]), in contrast
with previous studies in which CTL is usually associated with an encouraging prognosis in sporadic
colon cancer (Naito et al. [88]). These combinations indicated a restoring of the cytotoxic activity
of CTL, leading to an increasing of the immune surveillance activity.
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Pro-tumor Microenvironment. Characterized by a constant expression of dendritic cells (DCs),
attractors showed a Proliferation predominance with a complete Apoptosis suppression (Table 6.36).
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Table 6.36. Table reports the contribution of the entities expressed as activity levels (Section 5.1 -
Results). With a constant activation of dendritic cells (DC), Proliferation showed a high activity.

In a pro-tumor microenvironment, the activity of transcription factors STAT3 and NFKB was
somewhat higher than in non-inflammatory microenvironment and normal inflammatory response.
Experimental observations showed that STAT3 and NFKB are high expressed under inflammatory
stimuli (Greten et al. [48], Grivennikov et al. [49]).

Pro-tumor Microenvironment and P53 Inactivation. As described in literature, P53, known
as TP53, acts as tumor suppressor, playing a fundamental role in the Apopotosis process (Zilfou et
al. [114]).

As result of P53 deactivation, attractors showed once more a Proliferation predominance and a
complete Apoptosis suppression (Table 6.37). In this case, Proliferation did not change its activity
if compared with the simple pro-tumor microenvironment.
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Table 6.37. Table reports the contribution of the entities expressed as activity levels (Section 5.1 -
Results). With a constant activation of dendritic cells (DC) and the deactivation of P53, Proliferation
showed the same activity compared to Table 6.36.

Influencing Proliferation and Apoptosis using Drugs in a Pro-tumor Microenviron-
ment. As observed in pro-tumor microenvironment, the continue expression of dendritic cells
(DCs) produced a predominance of Proliferation, with a complete deactivation of the Apoptosis
activity (Table 6.25).

This paragraph proposes once more the investigation of how to restore a normal microenviron-
ment or at least to reduce the Proliferation activity using drugs. However, the analysis has been
performed according to the asynchronous updating policy.

Table 6.38 reported how the Systematic Knock Out (Section 5.1 - Drug Knowledge-based Knock
Out) has been used to explore rational new immune therapies.
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1 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0.73 0 BCL2
2 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0.73 0 COX2
3 0 0.97 0.01 0.5 0 0.92 0.01 0 0.94 0.94 0.97 0.9 0.99 0.77 0 COX2, IKK
4 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0.73 0 COX2, TNFA
5 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0 0 ERK
6 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0 0 FOS
7 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0.73 0 GSK3B
8 0 0.97 0.01 0.5 0 0.92 0.01 0 0.94 0.94 0.97 0.9 0.99 0.77 0 IKK
9 0 0.88 0.21 0 0 0.65 0.03 0 0.76 0.76 0.88 0.59 0.99 0.15 0 JAK

10 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0 0 MEK
11 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0 0 RAF
12 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0.73 0 SMASE
13 0 0.97 0.75 0.44 - 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0.73 0 TNFA
14 0 0.97 0.75 0.44 0 0.91 0.01 - 0.94 0.94 0.97 0.89 0.99 0.73 0 TGFB
15 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0.73 0 CCL2

Table 6.38. Alteration of entities activity levels through Systematic Knock Out (Section 5.1 - Drug
Knowledge-based Knock Out). On the right side, biological entities knocked out.

Results in Table 6.38 showed a suppression of the Proliferation activity through the inhibition
of ERK (row 5), FOS (row 6), MEK (row 10), and RAF (row 11). The ERK, MEK, FOS, and RAF
inhibition has been accomplished using the following drugs:

• ERK inhibitors:
– Purvalanol experimental drug [https://www.drugbank.ca/drugs/DB02733].

• FOS inhibitors:
– Nadroparin approved drug [https://www.drugbank.ca/drugs/DB08813].

Nadroparin is a low molecular weight heparin (LMWH) which, when bound to antithrom-
bin III (ATIII), accelerates the inactivation of factor II and factor Xa.

• MEK inhibitors:
– Cobimetinib, approved drug [https://www.drugbank.ca/drugs/DB05239].

Cobimetinib is a potent and highly selective small molecule inhibitor of mitogen-activated
protein kinase kinase 1 (MAP2K1 or MEK1), and central components of the RAS/RAF/MEK/ERK
signal transduction pathway. It is used in combination with vemurafenib for the treatment
of patients with unresectable or metastatic BRAF V600 mutation-positive melanoma.

– Bosutinib, approved drug [https://www.drugbank.ca/drugs/DB06616].
Bosutinib is a Bcr-Abl kinase inhibitor for the treatment of Philadelphia chromosome-
positive (Ph+) chronic myelogenous leukemia (CML).

– Trametinib, approved drug [https://www.drugbank.ca/drugs/DB08911].
Trametinib dimethyl sulfoxide is a kinase inhibitor.

• RAF inhibitors:
– Sorafenib approved and investigational drug [https://www.drugbank.ca/drugs/DB00398].

Sorafenib (rINN) is a drug approved for the treatment of advanced renal cell carcinoma
(primary kidney cancer). Sorafenib is a small molecular inhibitor of Raf kinase, PDGF
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(platelet-derived growth factor), VEGF receptor 2 & 3 kinases and c Kit the receptor for
Stem cell factor.

– Regorafenib approved drug [https://www.drugbank.ca/drugs/DB08896].
Regorafenib is an inhibitor of multiple kinases. It is used for the treatment of metastatic
colorectal cancer and advanced gastrointestinal stromal tumors.

– Dabrafenib approved drug [https://www.drugbank.ca/drugs/DB08912].
abrafenib mesylate is a reversible ATP-competitive kinase inhibitor and targets the MAPK
pathway.

Influencing Proliferation and Apoptosis using a Mix of Drugs in a Pro-tumor Microen-
vironment. Despite the use of the Combinatorial Knock Out (Section 5.1 - Drug Knowledge-
based Knock Out), the analysis showed no notable advantages in using a combination of drugs to
restore a normal microenvironment or at least to reduce the Proliferation activity
Influencing Proliferation and Apoptosis using Drugs in a Pro-tumor Microenviron-
ment and P53 Inactivation. As observed in pro-tumor microenvironments with the deactivation
of P53, the continue expression of dendritic cells (DCs) produced a predominance of Proliferation,
with a complete deactivation of the Apoptosis activity (Table 6.37).

Again, the analysis explored how drugs could be used to restore a normal microenvironment or
at least to reduce the Proliferation activity considering a complete deactivation of P53.

Table 6.39 showed how the Systematic Knock Out (Section 5.1 - Drug Knowledge-based Knock
Out) has been used to explore rational new immune therapies.
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1 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0.73 0 BCL2
2 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0.73 0 COX2
3 0 0.97 0.01 0.5 0 0.92 0.01 0 0.94 0.94 0.97 0.9 0.99 0.77 0 COX2, IKK
4 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0.73 0 COX2, TNFA
5 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0 0 ERK
6 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0 0 FOS
7 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0.73 0 GSK3B
8 0 0.97 0.01 0.5 0 0.92 0.01 0 0.94 0.94 0.97 0.9 0.99 0.77 0 IKK
9 0 0.88 0.21 0 0 0.65 0.03 0 0.76 0.76 0.88 0.59 0.97 0.15 0 JAK

10 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0 0 MEK
11 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0 0 RAF
12 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0.73 0 SMASE
13 0 0.97 0.75 0.44 - 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0.73 0 TNFA
14 0 0.97 0.75 0.44 0 0.91 0.01 - 0.94 0.94 0.97 0.89 0.99 0.73 0 TGFB
15 0 0.97 0.75 0.44 0 0.91 0.01 0 0.94 0.94 0.97 0.89 0.99 0.73 0 CCL2

Table 6.39. Alteration of entities activity levels through Systematic Knock Out (Section 5.1 - Drug
Knowledge-based Knock Out). On the right side, biological entities knocked out.

Results emphasized once again the fundamental role of P53 in the cell survival. However, even
considering the complete deactivation of P53, Table 6.39 showed the same trends observed in Ta-
ble 6.38.
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Influencing Proliferation and Apoptosis using a Mix of Drugs in a Pro-tumor Microen-
vironment and P53 Inactivation. Despite the use of the Combinatorial Knock Out (Section 5.1
- Drug Knowledge-based Knock Out), the analysis showed no notable advantages in using a combi-
nation of drugs to restore a normal microenvironment or at least to reduce the Proliferation activity

Conclusions

Through the modeling and simulation of the CAC network, SyQUAL has been compared with the
most representative qualitative tools (state of the art) for attractors identification. SyQUAL results
underlined a best trade-off considering the results accuracy, simulation performance, and usability.
SyQUAL allowed to reproduce experimental observations, confirming biological trends.

In the context of non-inflammatory microenvironment (Table 6.22 and Table 6.33), β-catenin
showed a complete suppression (as result of the constant expression of APC), as well as transcrip-
tion factors STAT3 (STAT3) and NF-κB (NFKB), considered with β-catenin (BCATENIN) distinc-
tive characteristics of CAC (Morin et al. [86], Kojima et al. [68], Atreya and Neurath [3], Yu, Pardoll
and Jove [113]). Without any inflammatory signal results confirmed that IECs tend to stay in a rest-
ing state (no proliferation).

In the context of normal inflammatory response (Table 6.23 and Table 6.34), the expression of
different types of immune cells influenced the inflammatory microenvironment in different ways
(Table 6.24 and Table 6.35). The continuous expression of DC contributed to produce one of the
most pro-proliferation microenvironments, even combined with the activation of TH2. Experimental
observation showed that transient activation of dendritic cells “triggered” controlled inflammatory
reactions (Fiocchi [36]). Furthermore, a constant activation of dendritic cells led to chronic inflam-
mation in IBD (Hart et al. [52]), increasing the growth and survival of IECs (MacDonald [81]).
The constant expression of MAC or TH1 led Proliferation to rise its activity at a disadvantage of
Apoptosis. The stable expression of TH2 or TREG produced an important increment of the Apop-
tosis activity. Considering the TREG expression, IL10 and TGFB showed an increased activity, in
contrast with IL6 and TNFA. Experimental observations proved that the T Cell regulatory activity
reduces the tumor development through (i) the production of immune suppressive cytokines, such
as TGF-β and IL-10, and (ii) the reduction of pro-inflammatory cytokines, such as IL-6 and TNF-α
(Erdman et al. [32]). The combined expression of TREG-CTL or TH2-CTL led to the most anti-
tumorigenic response. Clinical evidences showed that CTL plays a role in intestinal inflammation
and promotion of tumor growth (Waldner and Neurath [110]), in contrast with previous studies in
which CTL is usually associated with an encouraging prognosis in sporadic colon cancer (Naito et
al. [88]). These combinations indicate a restoring of the cytotoxic activity of CTL, leading to an
increasing of the immune surveillance activity.

In pro-tumor microenvironment (Table 6.25 and Table 6.36), transcription factors STAT3 and
NFKB showed an higher activity when compared with non-inflammatory microenvironment and
normal inflammatory response. Experimental observations showed that STAT3 and NFKB are high
expressed under inflammatory stimuli (Greten et al. [48], Grivennikov et al. [49]).

Finally, in a pro-tumor microenvironment characterized by a complete deactivation of P53 (Ta-
ble 6.26 and Table 6.37), results highlighted the fundamental role of P53 in the cell survival (Zilfou
et al. [114]), since no (notable) Apoptosis activity was detected.
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Conclusion and Future Works

This thesis has provided an efficient platform for modeling and simulation of Biological Systems
through Electronic Design Automation (EDA) techniques. The need of such a platform is due to
notable limitations that still affect the most recent qualitative tools. Current tools do not support the
simulation complexity of large networks and lack of automation in analyzing biological properties
such as complex attractors and molecule vulnerability. Moreover, such tools are designed and cus-
tomized for specific network type only, such as signaling, gene regulatory, or metabolic networks.

Last but not least, most of these tools only support the SBML qual description model for mod-
eling qualitative Biological Systems, in which logic networks report only interactions such as acti-
vation and inhibition.

In light of this, the main contribution of this thesis is summarized as follows:
• The proposed platform allows performing both automatic and efficient simulation of Biological

Systems, such as signaling and gene regulatory networks. Being based on languages and design
tools well-established in the EDA field, it allows addressing high computational costs normally
associated with the modeling and simulation of biological systems. Performed simulations are
not strictly dependent on the size and/or complexity of the network.

• The platform provides both synchronous and asynchronous updating policies for simula-
tion, where the asynchronous method relies on a time-delayed updating policy controlled by
topology-based constraints, in contrast with those policies based on random entity evaluation
which could lead to unrealistic behaviors.

• Additionally to the support of SBML qual, the proposed platform allows modeling and sim-
ulation of networks described through SBML Level 2. A SBML Level 2 reactions network
model provides a more detailed description of the natural phenomenon, providing a wider set
of interactions, by considering stimuli and catalysts.

• Availability of automatisms for network perturbation through zero (systematic knockout of all
biological entities without any particular criterion) and drug knowledge-based knockout ap-
proaches. Through drug targeting, perturbed network (under pathological conditions) can be
automatically analyzed in order to investigate novel potential pharmacological therapies, using
individual or combination of drugs. In such a way, biologists can test their systems according
to drug availability.

• Robustness/sensitivity analysis available through a user-friendly interface. Platform provides
its functionalities and generated results through a web-oriented interface. Simulation initial
conditions, updating policies and other options can be interactively set without requiring coding
or specific skills.

Although the achieved results are encouraging, there are still potential interesting extensions
and future works:
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• Extends the analysis to metabolic networks. Despite signaling and gene regulatory networks
in which biological entities are mainly involved in activation/inhibition reactions, metabolic
networks describe complex networks of biochemical reactions designed to explain flows of
substances.
Last decades seen the rising of Petri Nets (PNs) as valid formalism for modeling metabolic
networks, in alternative to quantitative models based on ODEs (strongly dependent on precise
kinetics and quantitative data). Available in various extensions, PNs allow the definition of both
qualitative and quantitative models. PNs are characterized by a graph-based structure, allowing
a logic representation of biological phenomena. However, the graph-based structure can be
enriched by considering quantitative information. For example, by adding stochastic reaction
rates, continuous concentration levels, and so forth. The growing interest in applying PNs to
model metabolic networks is reflected by the high number of works based on them.

• Provides functionalities to merge and model together different biological networks in order to
investigate the resulting system from a holistic perspective. In such a way, user could investigate
cross-talking networks, and how networks could influence each other.
Thus, pathological conditions could be recovered (restoring a normal condition) by targeting
(using drugs) biological networks directly involved in the activity of damaged networks. In this
way, even considering the absence of drug targets for damaged biological network, acting on
its neighborhood could be useful to identify indirected potential pharmacological therapies.

• Provides an integration of (in-vitro and in-vivo) experimental data and biological databases,
such as SABIO-Reaction Kinetics Database (Wittig et al. [112]), to better drive the delay times
definition through the use of kinetics rates.

• Extends the analysis to new biological systems scenarios, such as cell-to-cell communication.
Cell-to-cell communication provides a way to understand complex biological mechanisms un-
derlying phenotypes and how the evolutionary machinery affects them. As direct consequence,
the variation of complex biological phenomena is studied under different growth stages, such
as development, differentiation, aging, and regeneration, in which biological processes make
living beings to be resilient to natural fluctuations (i.e., DNA damaging). A deeper understand-
ing of mechanisms involved in cell-to-cell communication can play a fundamental role to better
explain cancers evolution, and how the microenvironment affects its progression and differenti-
ation (e.g., metastasis). Cell-to-cell communication plays an important role in the pathogenesis
of different cancer processes. By modeling those biological systems, it could be possible to
discover novel therapeutic approaches. At single-cell level, modeling biological systems can
improve the understanding of cancers biology. Last technological improvements in single-cell
measurements have provided a way to analyze with high accuracy the genetic and proteomic
variation, fundamental to better characterize signaling pathways in tumor cells. Modeling the
combination of cells interaction, their microenvironment, and tumor single-cell data in a com-
plete model will require high performance systems able to scale, as well as parallel implemen-
tations, issues already addressed in the EDA filed.
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23. Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, and Jean Krivine. Rule-
based modelling of cellular signalling. In CONCUR 2007–Concurrency Theory, pages 17–41.
Springer, 2007.

24. Vincent Danos and Cosimo Laneve. Formal molecular biology. Theoretical Computer Sci-
ence, 325(1):69–110, 2004.

25. Hidde De Jong. Modeling and simulation of genetic regulatory systems: a literature review.
Journal of computational biology, 9(1):67–103, 2002.
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