We study a class of nonlinear stochastic partial differential equations with dissipative nonlinear drift, driven by Lévy noise. We define a Hilbert–Banach setting in which we prove existence and uniqueness of solutions under general assumptions on the drift and the Lévy noise. We then prove a decomposition of the solution process into a stationary component, the law of which is identified with the unique invariant probability measure μ of the process, and a component which vanishes asymptotically for large times in the Lp(/mu)-sense, for all 1≤p<+∞.
Titolo: | Invariant measures for SDEs driven by Lévy noise: A case study for dissipative nonlinear drift in infinite dimension |
Autori: | |
Data di pubblicazione: | 2017 |
Rivista: | |
Handle: | http://hdl.handle.net/11562/961954 |
Appare nelle tipologie: | 01.01 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
CMS_15_04_A03.pdf | Versione dell'editore | ![]() | Utenti riconosciuti Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.