Size-based scheduling with aging has been recognized as an effective approach to guarantee fairness and nearoptimal system response times. We present HFSP, a scheduler introducing this technique to a real, multi-server, complex and widely used system such as Hadoop. Size-based scheduling requires a priori job size information, which is not available in Hadoop: HFSP builds such knowledge by estimating it on-line during job execution. Our experiments, which are based on realistic workloads generated via a standard benchmarking suite, pinpoint at a significant decrease in system response times with respect to the widely used Hadoop Fair scheduler, without impacting the fairness of the scheduler, and show that HFSP is largely tolerant to job size estimation errors.
HFSP: Bringing Size-Based Scheduling To Hadoop
CARRA, DAMIANO;
2017-01-01
Abstract
Size-based scheduling with aging has been recognized as an effective approach to guarantee fairness and nearoptimal system response times. We present HFSP, a scheduler introducing this technique to a real, multi-server, complex and widely used system such as Hadoop. Size-based scheduling requires a priori job size information, which is not available in Hadoop: HFSP builds such knowledge by estimating it on-line during job execution. Our experiments, which are based on realistic workloads generated via a standard benchmarking suite, pinpoint at a significant decrease in system response times with respect to the widely used Hadoop Fair scheduler, without impacting the fairness of the scheduler, and show that HFSP is largely tolerant to job size estimation errors.File | Dimensione | Formato | |
---|---|---|---|
carra_TCC2015.pdf
solo utenti autorizzati
Tipologia:
Documento in Pre-print
Licenza:
Accesso ristretto
Dimensione
594.85 kB
Formato
Adobe PDF
|
594.85 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.