electrophysiology; high-density multielectrode array; neural cultures; retina; spike sorting

Unsupervised spike sorting for large scale, high density multielectrode arrays

MURINO, Vittorio;
2017-01-01

Abstract

electrophysiology; high-density multielectrode array; neural cultures; retina; spike sorting
2017
We present a method for automated spike sorting for recordings with high-density, large-scale multielectrode arrays. Exploiting the dense sampling of single neurons by multiple electrodes, an efficient, low-dimensional representation of detected spikes consisting of estimated spatial spike locations and dominant spike shape features is exploited for fast and reliable clustering into single units. Millions of events can be sorted in minutes, and the method is parallelized and scales better than quadratically with the number of detected spikes. Performance is demonstrated using recordings with a 4,096-channel array and validated using anatomical imaging, optogenetic stimulation, and model-based quality control. A comparison with semi-automated, shape-based spike sorting exposes significant limitations of conventional methods. Our approach demonstrates that it is feasible to reliably isolate the activity of up to thousands of neurons and that dense, multi-channel probes substantially aid reliable spike sorting.
File in questo prodotto:
File Dimensione Formato  
Unsupervised Spike Sorting.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 12.51 MB
Formato Adobe PDF
12.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/961726
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? ND
social impact