The capsids of most plant viruses are simple and robust structures consisting of multiple copies of one or few types of protein subunits arranged with either icosahedral or helical ordered symmetry. In many cases, capsids can be produced in large quantities either by the infection of plants or by the expression of the subunits. In view of their relative simplicity, stability and easy production, plant chimeric virus particles (CVPs) or empty virus-like particles (eVLPs) have attracted attention as potential reagents for applications in bionanotechnology. In this work CVPs and eVLPs have been exploited for the expression of functional peptides, in order to stabilize them and avoid peptide low intrinsic stability and susceptibility to degradation. In particular, the viral expression platforms chosen for the expression of target peptides are based on four plant viruses widely used as scaffold for peptide display: Potato Virus X (PVX), Cowpea Mosaic Virus (CPMV), Tomato Bushy Stunt Virus (TBSV) and Turnip Mosaic Virus (TuMV). The first application explored in this work regards the therapy of Type 1 diabetes (T1D) and Rheumatoid arthritis (RA), two autoimmune diseases that share a strong social impact. Currently, there are treatments able to manage and/or stem the effects of these disorders. In particular, plant viruses displaying peptides associated to T1D and RA have been used respectively for the development of a preventive and therapeutic drug. Virus particles displaying autoantigenic peptide specific for these diseases have been expressed and used for pre-clinical studies in T1D and RA animal models. The results observed suggest that the use of viral structure for peptide display works as an adjuvant by increasing peptide modulation capability. The second part of this work regards the use of plant viruses displaying peptide as reagents for the development of innovative kit for the Sjögren’s Syndrome (SjS) and RA diagnosis. These two autoimmune diseases are difficult to be diagnosed and either for SjS of RA there are subgroups of patient seronegative to the main diagnostic serological markers. In this work, the use of filamentous particles for the display of specific SjS peptide allowed to increase the diagnostic performances of an ELISA kit in comparison to the use of the peptide alone. Moreover, autoantigenic peptides associated to RA were successfully expressed in plants on the surface of viral particles that will be exploited in the future for the development of a kit for seronegative RA diagnosis. A third part of this PhD thesis regards another possible application of plant viruses as tools for peptide display. In particular, viral particles have been used for the expression of a antimicrobial peptide (AMP) that could be exploited as eco-friendly pesticide and for “nanoagriculture” application. Finally, the possibility of developing a biotechnological tool for peptide internalisation into the cells has been exploited by fusing on the surface of an icosahedral plant virus a cell-penetrating peptide (CPP) derive from HIV. Regarding this third part, CVPs and eVLPs displaying the selected peptides have been successfully expressed in plants; however, several drawbacks have been encountered in the purification process.
I capsidi virali sono strutture stabili e robuste composte da multiple copie di una o più tipi di subunità proteiche organizzate con simmetrie ordinate (icosaedriche o filmentose). I capsidi virali possono essere prodotti in sistemi vegetali in consistenti quantità sia tramite l’infezione delle piante sia tramite l’espressione delle subunità capsidiche. Data la semplicità e l’elevata stabilità, le Chimeric Virus Particles (CVPs) e le empty Virus Like Particles (eVLPs) hanno attirato l’attenzione della comunità scientifica per lo sviluppo di reagenti che possono trovare impiego nell’ambito delle nano-biotecnologie. In questo lavoro di tesi, le CVPs e le eVLPs sono state sfruttate per l’espressione di peptidi funzionali, al fine di stabilizzarli e di produrli a basso costo. In particolare, le piattaforme di espressione virali scelte si basano sui seguenti virus vegetali: Potato Virus X (PVX), Cowpea Mosaic Virus (CPMV), Tomato Bushy Stunt Virus (TBSV) e il Turnip Mosaic Virus (TuMV). La prima applicazione descritta riguarda il trattamento di due malattie autoimmuni che hanno un forte impatto sociale: il Diabete Melito di tipo 1 (T1D) e l’Artrite Reumatoide (AR). Attualmente, esistono trattamenti che sono solo in grado di arginare e gestire gli effetti di queste patologie senza però bloccarne definitivamente l’azione. In questo lavoro, virus vegetali che espongono peptidi associati al T1D e all’AR sono stati utilizzati per lo sviluppo rispettivamente di un trattamento preventivo e terapeutico. Le particelle virali sono state geneticamente modificate in modo da esporre peptidi autoantigenici associati al T1D e all’AR, espresse in pianta, purificate dal tessuto vegetale ed utilizzate per studi pre-clinici in animali modello. I risultati ottenuti mostrano che la struttura delle particelle virali è in grado di agire come adiuvante aumentando la capacità immunomodulante dei peptidi autoantigenici selezionati ed esposti sui capsidi virali. La seconda parte di questo lavoro di tesi, si concentra sull’utilizzo delle CVPs esprimenti peptidi associati alla Sindrome di Sjögren (SjS) e all’AR per lo sviluppo di innovativi kit diagnostici. Queste due malattie autoimmuni sono attualmente difficili da diagnosticare principalmente per la presenza di un sottogruppo di pazienti che risulta essere negativo alla presenza dei più comuni marcatori sierologici utilizzati per la diagnosi. Questo progetto si è focalizzato sull’espressione in pianta di CVPs di struttura filamentosa che, tramite l’espressione di specifici peptidi, hanno permesso di migliorare notevolmente le performance diagnostiche di un test ELISA sviluppato con tali particelle in confrontato con lo stesso sviluppato utilizzo i peptidi sintetici. Inoltre, sono state espresse in pianta ulteriori CVPs che espongono due peptidi associati all’AR. Tali CVPs saranno in futuro utilizzate per la messa a punto di un kit per la diagnosi dell’AR. L’ultima parte di questo lavoro, riguarda altre possibili applicazioni dei virus vegetali come strumenti nano-biotecnologici. Nello specifico, eVLPs sono state espresse in pianta al fine di esprimere un peptide antimicrobico (AMP) e un cell penetrating peptide (CPP) per ottenere rispettivamente un innovativo eco-pesticida e uno strumento biotecnologico per l’internalizzazione di peptidi funzionali o proteine di interesse nelle cellule.
Plant viruses: the many aspects of fascinating nano-biotechnological tool
ZAMPIERI, ROBERTA
2017-01-01
Abstract
The capsids of most plant viruses are simple and robust structures consisting of multiple copies of one or few types of protein subunits arranged with either icosahedral or helical ordered symmetry. In many cases, capsids can be produced in large quantities either by the infection of plants or by the expression of the subunits. In view of their relative simplicity, stability and easy production, plant chimeric virus particles (CVPs) or empty virus-like particles (eVLPs) have attracted attention as potential reagents for applications in bionanotechnology. In this work CVPs and eVLPs have been exploited for the expression of functional peptides, in order to stabilize them and avoid peptide low intrinsic stability and susceptibility to degradation. In particular, the viral expression platforms chosen for the expression of target peptides are based on four plant viruses widely used as scaffold for peptide display: Potato Virus X (PVX), Cowpea Mosaic Virus (CPMV), Tomato Bushy Stunt Virus (TBSV) and Turnip Mosaic Virus (TuMV). The first application explored in this work regards the therapy of Type 1 diabetes (T1D) and Rheumatoid arthritis (RA), two autoimmune diseases that share a strong social impact. Currently, there are treatments able to manage and/or stem the effects of these disorders. In particular, plant viruses displaying peptides associated to T1D and RA have been used respectively for the development of a preventive and therapeutic drug. Virus particles displaying autoantigenic peptide specific for these diseases have been expressed and used for pre-clinical studies in T1D and RA animal models. The results observed suggest that the use of viral structure for peptide display works as an adjuvant by increasing peptide modulation capability. The second part of this work regards the use of plant viruses displaying peptide as reagents for the development of innovative kit for the Sjögren’s Syndrome (SjS) and RA diagnosis. These two autoimmune diseases are difficult to be diagnosed and either for SjS of RA there are subgroups of patient seronegative to the main diagnostic serological markers. In this work, the use of filamentous particles for the display of specific SjS peptide allowed to increase the diagnostic performances of an ELISA kit in comparison to the use of the peptide alone. Moreover, autoantigenic peptides associated to RA were successfully expressed in plants on the surface of viral particles that will be exploited in the future for the development of a kit for seronegative RA diagnosis. A third part of this PhD thesis regards another possible application of plant viruses as tools for peptide display. In particular, viral particles have been used for the expression of a antimicrobial peptide (AMP) that could be exploited as eco-friendly pesticide and for “nanoagriculture” application. Finally, the possibility of developing a biotechnological tool for peptide internalisation into the cells has been exploited by fusing on the surface of an icosahedral plant virus a cell-penetrating peptide (CPP) derive from HIV. Regarding this third part, CVPs and eVLPs displaying the selected peptides have been successfully expressed in plants; however, several drawbacks have been encountered in the purification process.File | Dimensione | Formato | |
---|---|---|---|
PhDthesis Roberta Zampieri.pdf
Open Access dal 17/11/2018
Descrizione: Plant viruses: the many aspects of a fascinating nano-biotechnological tool
Tipologia:
Tesi di dottorato
Licenza:
Accesso ristretto
Dimensione
4.46 MB
Formato
Adobe PDF
|
4.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.