In progressive myoclonic epilepsy (PME), a rare epileptic syndrome caused by a variety of genetic disorders, the combination of peripheral stimulation and functional magnetic resonance imaging (fMRI) can shed light on the mechanisms underlying cortical dysfunction. The aim of the study is to investigate sensorimotor network modifications in PME by assessing the relationship between neurophysiological findings and blood oxygen level dependent (BOLD) activation. Somatosensory-evoked potential (SSEP) obtained briefly before fMRI and BOLD activation during median-nerve electrical stimulation were recorded in four subjects with typical PME phenotype and compared with normative data. Giant scalp SSEPs with enlarger N20-P25 complex compared to normal data (mean amplitude of 26.2 ± 8.2 μV after right stimulation and 27.9 ± 3.7 μV after left stimulation) were detected. Statistical group analysis showed a reduced BOLD activation in response to median nerve stimulation in PMEs compared to controls over the sensorimotor (SM) areas and an increased response over subcortical regions (p < 0.01, Z > 2.3, corrected). PMEs show dissociation between neurophysiological and BOLD findings of SSEPs (giant SSEP with reduced BOLD activation over SM). A direct pathway connecting a highly restricted area of the somatosensory cortex with the thalamus can be hypothesized to support the higher excitability of these areas.
Neurophysiological and BOLD signal uncoupling of giant somatosensory evoked potentials in progressive myoclonic epilepsy: a case-series study
STORTI, Silvia Francesca;BRIGO, Francesco;ALESSANDRINI, FRANCO;BONGIOVANNI, Luigi Giuseppe;MENEGAZ, Gloria;
2017-01-01
Abstract
In progressive myoclonic epilepsy (PME), a rare epileptic syndrome caused by a variety of genetic disorders, the combination of peripheral stimulation and functional magnetic resonance imaging (fMRI) can shed light on the mechanisms underlying cortical dysfunction. The aim of the study is to investigate sensorimotor network modifications in PME by assessing the relationship between neurophysiological findings and blood oxygen level dependent (BOLD) activation. Somatosensory-evoked potential (SSEP) obtained briefly before fMRI and BOLD activation during median-nerve electrical stimulation were recorded in four subjects with typical PME phenotype and compared with normative data. Giant scalp SSEPs with enlarger N20-P25 complex compared to normal data (mean amplitude of 26.2 ± 8.2 μV after right stimulation and 27.9 ± 3.7 μV after left stimulation) were detected. Statistical group analysis showed a reduced BOLD activation in response to median nerve stimulation in PMEs compared to controls over the sensorimotor (SM) areas and an increased response over subcortical regions (p < 0.01, Z > 2.3, corrected). PMEs show dissociation between neurophysiological and BOLD findings of SSEPs (giant SSEP with reduced BOLD activation over SM). A direct pathway connecting a highly restricted area of the somatosensory cortex with the thalamus can be hypothesized to support the higher excitability of these areas.File | Dimensione | Formato | |
---|---|---|---|
srep44664.pdf
accesso aperto
Descrizione: CC-4.0-BY publisher version
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
1.52 MB
Formato
Adobe PDF
|
1.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.