Increasing interest is focused on omega-3 fatty acids (FA) because of their potential beneficial effects, particularly in cardiovascular disease prevention. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two major omega-3 FA, are mainly consumed through diet, particularly from fish and seafood intake, whereas alpha-linolenic acid (ALA) is present in high amounts in leafy green vegetables, nuts and seeds. The hypothesis of a cardiovascular protective action of omega-3 FA derives mainly from observational studies, whereas the evidence from interventional studies is not always consistent. Nonetheless, clinical trials and meta-analyses indicate a positive action, at minimum on blood pressure (BP). Omega-3 FA may act through different biological pathways; however, in our review, we seek to revisit, most notably, the role of their metabolites via cytochrome P450 (CYP450) in hemodynamic modulation. We emphasize that the effect of omega-3 FA may depend on their balance with other dietary compounds, particularly omega-6 FA, which compete for the same pathways, thus modulating the production of metabolites. Furthermore, the biological activity of omega-3 FA might be better explained by the complex balance and interactions between a variety of nutrients and polymorphisms of genes implicated in specific metabolic pathways.

Omega-3 fatty acids and cytochrome P450-derived eicosanoids in cardiovascular diseases: Which actions and interactions modulate hemodynamics?

BONAFINI, Sara;FAVA, Cristiano
2017-01-01

Abstract

Increasing interest is focused on omega-3 fatty acids (FA) because of their potential beneficial effects, particularly in cardiovascular disease prevention. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two major omega-3 FA, are mainly consumed through diet, particularly from fish and seafood intake, whereas alpha-linolenic acid (ALA) is present in high amounts in leafy green vegetables, nuts and seeds. The hypothesis of a cardiovascular protective action of omega-3 FA derives mainly from observational studies, whereas the evidence from interventional studies is not always consistent. Nonetheless, clinical trials and meta-analyses indicate a positive action, at minimum on blood pressure (BP). Omega-3 FA may act through different biological pathways; however, in our review, we seek to revisit, most notably, the role of their metabolites via cytochrome P450 (CYP450) in hemodynamic modulation. We emphasize that the effect of omega-3 FA may depend on their balance with other dietary compounds, particularly omega-6 FA, which compete for the same pathways, thus modulating the production of metabolites. Furthermore, the biological activity of omega-3 FA might be better explained by the complex balance and interactions between a variety of nutrients and polymorphisms of genes implicated in specific metabolic pathways.
2017
cardiovascular disease; cytochrome P450 eicosanoids; hemodynamics; omega-3 fatty acids
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/958282
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact