A spectroscopic investigation of Tb3+/Eu3+/Dy3+ triply-doped Zn(PO3)2 glass focused on generation of white light is performed through photoluminescence spectra and decay time measurements. The white light emission obtained in the glass phosphor shows excitation wavelength dependent tunable tonality: neutral white (0.385, 0.441) of 4250 K and warm white (0.417, 0.412) of 3429 K, upon 445 and 322 nm excitations, respectively. A quantum yield of 26.1 ± 1.2% is attained upon Dy3+ excitation at 445 nm. The white luminescence is due mainly to terbium 5D4 → 7F5, dysprosium 4F9/2 → 6H15/2,13/2 and europium 5D0 → 7F2 transitions. It is demonstrated that non-radiative energy transfers Dy3+ to Tb3+ and Eu3+, and Tb3+ to Eu3+, take place in the glass phosphor excited at 445 or 322 nm. Tb3+/Eu3+/Dy3+ triply-doped Zn(PO3)2 glass, excited by AlGaN (322 nm) or InGaN (445 nm) LEDs, could then be appropriated for solid state lighting technology as neutral or warm white light phosphors
White light generation in Tb3+/Eu3+/Dy3+ triply-doped Zn(PO3)2 glass
SPEGHINI, Adolfo;BETTINELLI, Marco Giovanni;
2016-01-01
Abstract
A spectroscopic investigation of Tb3+/Eu3+/Dy3+ triply-doped Zn(PO3)2 glass focused on generation of white light is performed through photoluminescence spectra and decay time measurements. The white light emission obtained in the glass phosphor shows excitation wavelength dependent tunable tonality: neutral white (0.385, 0.441) of 4250 K and warm white (0.417, 0.412) of 3429 K, upon 445 and 322 nm excitations, respectively. A quantum yield of 26.1 ± 1.2% is attained upon Dy3+ excitation at 445 nm. The white luminescence is due mainly to terbium 5D4 → 7F5, dysprosium 4F9/2 → 6H15/2,13/2 and europium 5D0 → 7F2 transitions. It is demonstrated that non-radiative energy transfers Dy3+ to Tb3+ and Eu3+, and Tb3+ to Eu3+, take place in the glass phosphor excited at 445 or 322 nm. Tb3+/Eu3+/Dy3+ triply-doped Zn(PO3)2 glass, excited by AlGaN (322 nm) or InGaN (445 nm) LEDs, could then be appropriated for solid state lighting technology as neutral or warm white light phosphorsI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.