In addition to the well-known Ca2+ sensor calmodulin, plants possess many calmodulin-like proteins (CMLs) that are predicted to have specific roles in the cell. Herein, we described the biochemical and biophysical characterization of recombinant Arabidopsis thaliana CML14. We applied isothermal titration calorimetry to analyze the energetics of Ca2+ and Mg2+ binding to CML14, and nuclear magnetic resonance spectroscopy, together with intrinsic and ANS-based fluorescence, to evaluate the structural effects of metal binding and metal-induced conformational changes. Furthermore, differential scanning calorimetry and limited proteolysis were used to characterize protein thermal and local stability. Our data demonstrate that CML14 binds one Ca2+ ion with micromolar affinity (K-d approximate to 12 mu M) and the presence of 10 mM Mg2+ decreases the Ca2+ affinity by approximate to 5-fold. Although binding of Ca2+ to CML14 increases protein stability, it does not result in a more hydrophobic protein surface and does not induce the large conformational rearrangement typical of Ca2+ sensors, but causes only localized structural changes in the unique functional EF-hand. Our data, together with a molecular modelling prediction, provide interesting insights into the biochemical properties of Arabidopsis CML14 and may be useful to direct additional studies aimed at understanding its physiological role.

Metal binding affinity and structural properties of calmodulin-like protein 14 from Arabidopsis thaliana

Vallone, Rosario;LA VERDE, Valentina;D'ONOFRIO, Mariapina;GIORGETTI, ALEJANDRO;DOMINICI, Paola;ASTEGNO, Alessandra
2016-01-01

Abstract

In addition to the well-known Ca2+ sensor calmodulin, plants possess many calmodulin-like proteins (CMLs) that are predicted to have specific roles in the cell. Herein, we described the biochemical and biophysical characterization of recombinant Arabidopsis thaliana CML14. We applied isothermal titration calorimetry to analyze the energetics of Ca2+ and Mg2+ binding to CML14, and nuclear magnetic resonance spectroscopy, together with intrinsic and ANS-based fluorescence, to evaluate the structural effects of metal binding and metal-induced conformational changes. Furthermore, differential scanning calorimetry and limited proteolysis were used to characterize protein thermal and local stability. Our data demonstrate that CML14 binds one Ca2+ ion with micromolar affinity (K-d approximate to 12 mu M) and the presence of 10 mM Mg2+ decreases the Ca2+ affinity by approximate to 5-fold. Although binding of Ca2+ to CML14 increases protein stability, it does not result in a more hydrophobic protein surface and does not induce the large conformational rearrangement typical of Ca2+ sensors, but causes only localized structural changes in the unique functional EF-hand. Our data, together with a molecular modelling prediction, provide interesting insights into the biochemical properties of Arabidopsis CML14 and may be useful to direct additional studies aimed at understanding its physiological role.
2016
Arabidopsis thaliana; EF-hand; calcium binding; calmodulin-like protein; conformational change; protein stability
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/950507
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 27
social impact