Surface plasmon resonance (SPR) spectroscopy is widely used to probe interactions involving biological macromolecules by detecting changes in the refractive index in a metal/dielectric interface following the dynamic formation of a molecular complex. In past years, SPR-based experimental approaches were developed to monitor conformational changes induced by the binding of small analytes to proteins coupled to the surface of commercially available sensor chips. A significant contribution to our understanding of the phenomenon came from the study of several Ca(2+)-sensor proteins operating in diverse cellular scenarios, in which the conformational switch is triggered by specific Ca(2+) signals. Structural and physicochemical analyses demonstrated that the SPR signal not only depends on the change in protein size upon Ca(2+)-binding but likely originates from variations in the hydration shell structure. The resulting changes in the dielectric properties of water or of the protein-water interface eventually reflect different crowding conditions on the SPR sensor chip, which mimic the cellular environment. SPR could hence be used to monitor conformational transitions in proteins, especially when a significant variation in the hydrophobicity of the solvent-exposed protein surface occurs, thus leading to changes in the dielectric milieu of the whole sensor chip surface. We review recent work in which SPR has been successfully employed to provide a fingerprint of the conformational change dynamics in proteins under native and altered conditions, which include post-translational modifications, copresence of competing analytes, and point mutations of single amino acids associated with genetic diseases.

Fingerprints of calcium-binding protein conformational dynamics monitored by surface plasmon resonance

DELL'ORCO, Daniele;
2016-01-01

Abstract

Surface plasmon resonance (SPR) spectroscopy is widely used to probe interactions involving biological macromolecules by detecting changes in the refractive index in a metal/dielectric interface following the dynamic formation of a molecular complex. In past years, SPR-based experimental approaches were developed to monitor conformational changes induced by the binding of small analytes to proteins coupled to the surface of commercially available sensor chips. A significant contribution to our understanding of the phenomenon came from the study of several Ca(2+)-sensor proteins operating in diverse cellular scenarios, in which the conformational switch is triggered by specific Ca(2+) signals. Structural and physicochemical analyses demonstrated that the SPR signal not only depends on the change in protein size upon Ca(2+)-binding but likely originates from variations in the hydration shell structure. The resulting changes in the dielectric properties of water or of the protein-water interface eventually reflect different crowding conditions on the SPR sensor chip, which mimic the cellular environment. SPR could hence be used to monitor conformational transitions in proteins, especially when a significant variation in the hydrophobicity of the solvent-exposed protein surface occurs, thus leading to changes in the dielectric milieu of the whole sensor chip surface. We review recent work in which SPR has been successfully employed to provide a fingerprint of the conformational change dynamics in proteins under native and altered conditions, which include post-translational modifications, copresence of competing analytes, and point mutations of single amino acids associated with genetic diseases.
2016
surface plasmon resonance spectroscopy; Ca2+ binding proteins; conformational transitions; proteins; water
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/949958
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact