We consider complex-valued solutions uε of the Ginzburg–Landau on a smooth bounded simply connected domain Ω of RN, N⩾2 (here ε is a parameter between 0 and 1). We assume that uε=gε on ∂Ω, where |gε|=1 and gε is uniformly bounded in H1/2(∂Ω). We also assume that the Ginzburg–Landau energy Eε(uε) is bounded by M0|logε|, where M0 is some given constant. We establish, for every 1⩽p<N/(N−1), uniform W1,p bounds for uε (independent of ε). These types of estimates play a central role in the asymptotic analysis of uε as ε→0.
W^1,p estimates for solutions to the Ginzburg–Landau equation with boundary data in H^1/2 / Bethuel, Fabrice; Bourgain, Jean; Brezis, Haı̈m; Orlandi, Giandomenico. - In: COMPTES RENDUS DE L'ACADÉMIE DES SCIENCES. SÉRIE 1, MATHÉMATIQUE. - ISSN 0764-4442. - STAMPA. - 333:12(2001), pp. 1069-1076.
Titolo: | W^1,p estimates for solutions to the Ginzburg–Landau equation with boundary data in H^1/2 |
Autori: | |
Data di pubblicazione: | 2001 |
Rivista: | |
Citazione: | W^1,p estimates for solutions to the Ginzburg–Landau equation with boundary data in H^1/2 / Bethuel, Fabrice; Bourgain, Jean; Brezis, Haı̈m; Orlandi, Giandomenico. - In: COMPTES RENDUS DE L'ACADÉMIE DES SCIENCES. SÉRIE 1, MATHÉMATIQUE. - ISSN 0764-4442. - STAMPA. - 333:12(2001), pp. 1069-1076. |
Handle: | http://hdl.handle.net/11562/946432 |
Appare nelle tipologie: | 01.01 Articolo in Rivista |