We describe a class of explicit invariant measures for stochastic differential equations driven by Lévy noise. We relate them to the corresponding Fokker Planck equation. In the symmetric case, we point out the relation with the theory of Dirichlet forms and generalized Schrö}dinger type operators.
Titolo: | A Class of Lévy Driven SDEs and their Explicit Invariant Measures |
Autori: | |
Data di pubblicazione: | 2016 |
Rivista: | |
Handle: | http://hdl.handle.net/11562/938382 |
Appare nelle tipologie: | 01.01 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
A class of L´evy driven SDEs and their explicit invariant Measures.pdf | Documento in Pre-print | ![]() | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.