Several studies have shown that in patients with acute leukaemia given allogeneic haematopoietic stem cell transplantation (allo-HSCT) large part of the therapeutic effect lies on the anti-tumour effect displayed by cells of both adaptive and innate immunity. This evidence has also opened new scenarios for the treatment of patients with other haematological malignancies/solid tumours. In particular, donor-derived natural killer (NK) cells play a crucial role in the eradication of cancer cells in patients given an allograft from an HLA-haploidentical relative, especially when there is a killer inhibitory-receptor (KIR)-KIR ligand mismatched in the donor-recipient direction. Alloreactive donor-derived NK cells have been also demonstrated to kill recipient antigen-presenting cells and cytotoxic T lymphocytes, thus preventing graft-versus-host disease (GvHD) and graft rejection and to largely contribute to the defence against cytomegalovirus infection in the early post-transplant period. Several clinical studies have recently focused also on the influence of NK-cell activating receptors on the outcome of allo-HSCT recipients; in particular, B/x haplotype donors offer clinical advantages compared with A/A donors, even when the donor is an HLA-identical volunteer. Altogether, these data have provided the rationale for implementing phase I/II clinical trials based on adoptive infusion of either selected or ex vivo activated NK cells from an HLA-mismatched donor. This review summarizes the biological and clinical data on the role played by NK cells in patients with high-risk acute leukaemia, focusing also on the still unsolved issues and the future perspectives related to the approaches of adoptive NK cell therapy.

Natural killer cells in the treatment of high-risk acute leukaemia

MORETTA, Francesca;
2014-01-01

Abstract

Several studies have shown that in patients with acute leukaemia given allogeneic haematopoietic stem cell transplantation (allo-HSCT) large part of the therapeutic effect lies on the anti-tumour effect displayed by cells of both adaptive and innate immunity. This evidence has also opened new scenarios for the treatment of patients with other haematological malignancies/solid tumours. In particular, donor-derived natural killer (NK) cells play a crucial role in the eradication of cancer cells in patients given an allograft from an HLA-haploidentical relative, especially when there is a killer inhibitory-receptor (KIR)-KIR ligand mismatched in the donor-recipient direction. Alloreactive donor-derived NK cells have been also demonstrated to kill recipient antigen-presenting cells and cytotoxic T lymphocytes, thus preventing graft-versus-host disease (GvHD) and graft rejection and to largely contribute to the defence against cytomegalovirus infection in the early post-transplant period. Several clinical studies have recently focused also on the influence of NK-cell activating receptors on the outcome of allo-HSCT recipients; in particular, B/x haplotype donors offer clinical advantages compared with A/A donors, even when the donor is an HLA-identical volunteer. Altogether, these data have provided the rationale for implementing phase I/II clinical trials based on adoptive infusion of either selected or ex vivo activated NK cells from an HLA-mismatched donor. This review summarizes the biological and clinical data on the role played by NK cells in patients with high-risk acute leukaemia, focusing also on the still unsolved issues and the future perspectives related to the approaches of adoptive NK cell therapy.
Adoptive immunotherapy with NK cells; Allogeneic hematopoietic stem cell transplantation; Inhibitory and activating NK-cell receptors; Innate immunity; KIR–KIR ligand mismatched; Redirection of NK-cell cytotoxicity; Acute Disease; Hematopoietic Stem Cell Transplantation; Humans; Immunotherapy, Adoptive; Killer Cells, Natural; Leukemia; Tissue Donors; Transplantation, Homologous
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/935986
Citazioni
  • ???jsp.display-item.citation.pmc??? 39
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact