A nickel metal-organic framework (Ni-MOF) was successfully synthesized using ultrasound irradiation. Further to this, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and nitrogen adsorption [i.e. Brunauer-Emmett-Teller (BET) Surface Area Analysis] techniques were used to characterize the synthesized Ni-MOF. In addition, the effect of sonication on the surface area, pore diameter and pore volume of the final product was systematically studied using Taguchi technique. The experiments ascertained that manufacturing of the Ni-MOF by means of the ultrasonic-assisted technique is feasible at a relatively shorter time compare to the conventional methods. The final product showed more uniform shape distribution and improved BET properties. The obtained results offered that the synthesized Ni-MOF samples could be used in several applications.

A systematic study on the use of ultrasound energy for the synthesis of nickel-metal organic framework compounds

Daldosso, Nicola;Ghafarinazari, Ali;
2015-01-01

Abstract

A nickel metal-organic framework (Ni-MOF) was successfully synthesized using ultrasound irradiation. Further to this, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and nitrogen adsorption [i.e. Brunauer-Emmett-Teller (BET) Surface Area Analysis] techniques were used to characterize the synthesized Ni-MOF. In addition, the effect of sonication on the surface area, pore diameter and pore volume of the final product was systematically studied using Taguchi technique. The experiments ascertained that manufacturing of the Ni-MOF by means of the ultrasonic-assisted technique is feasible at a relatively shorter time compare to the conventional methods. The final product showed more uniform shape distribution and improved BET properties. The obtained results offered that the synthesized Ni-MOF samples could be used in several applications.
2015
Chemical synthesis; Microstructure; Organometallic compounds; Ultrasonic energy
File in questo prodotto:
File Dimensione Formato  
Sargazi et al., Ultrasonics Sonochemistry 27 (2015), 395-402.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: Accesso ristretto
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/934432
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 56
social impact