Coalitions of weighted voting games can be restricted to be connected components of a graph. As a consequence, coalition formation, and therefore a player’s power, depends on the topology of the graph. We analyze the problems of computing the Banzhaf and the Shapley–Shubik power indexes for this class of voting games and prove that calculating them is #P-complete in the strong sense for general graphs. For trees, we provide pseudo-polynomial time algorithms and prove #P-completeness in the weak sense for both indexes.
The complexity of power indexes with graph restricted coalitions
RIZZI, ROMEO;
2015-01-01
Abstract
Coalitions of weighted voting games can be restricted to be connected components of a graph. As a consequence, coalition formation, and therefore a player’s power, depends on the topology of the graph. We analyze the problems of computing the Banzhaf and the Shapley–Shubik power indexes for this class of voting games and prove that calculating them is #P-complete in the strong sense for general graphs. For trees, we provide pseudo-polynomial time algorithms and prove #P-completeness in the weak sense for both indexes.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.