It is well known that the gap between the optimal values of bin packing and fractional bin packing, if the latter is rounded up to the closest integer, is almost always null. Known counterexamples to this for integer input values involve fairly large numbers. Specifically, the first one was derived in 1986 and involved a bin capacity of the order of a billion. Later in 1998 a counterexample with a bin capacity of the order of a million was found. In this paper we show a large number of counterexamples with bin capacity of the order of a hundred, showing that the gap may be positive even for numbers which arise in customary applications. The associated instances are constructed starting from the Petersen graph and using the fact that it is fractionally, but not integrally, 3-edge colorable.

Friendly bin packing instances without Integer Round-up Property

RIZZI, ROMEO
2015-01-01

Abstract

It is well known that the gap between the optimal values of bin packing and fractional bin packing, if the latter is rounded up to the closest integer, is almost always null. Known counterexamples to this for integer input values involve fairly large numbers. Specifically, the first one was derived in 1986 and involved a bin capacity of the order of a billion. Later in 1998 a counterexample with a bin capacity of the order of a million was found. In this paper we show a large number of counterexamples with bin capacity of the order of a hundred, showing that the gap may be positive even for numbers which arise in customary applications. The associated instances are constructed starting from the Petersen graph and using the fact that it is fractionally, but not integrally, 3-edge colorable.
2015
Bin packing problem, Integer Round-up Property, Petersen graph
File in questo prodotto:
File Dimensione Formato  
friendly_bin_packing_MathProg.pdf

solo utenti autorizzati

Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 16.48 MB
Formato Adobe PDF
16.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/933295
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 21
social impact