Let E be a directed graph, K any field, and let LK(E) denote the Leavitt path algebra of E with coefficients in K. For each rational infinite path c∞ of E we explicitly construct a projective resolution of the corresponding Chen simple left LK(E)-module V[c∞]. Further, when E is row- finite, for each irrational infinite path p of E we explicitly construct a projective resolution of the corresponding Chen simple left LK(E)-module V[p]. For Chen simple modules S, T we describe Ext1LK (E)(S, T ) by presenting an explicit K-basis. For any graph E containing at least one cycle, this description guarantees the existence of indecomposable left LK(E)-modules of any prescribed finite length.
Extensions of simple modules over Leavitt path algebras
MANTESE, Francesca;
2015-01-01
Abstract
Let E be a directed graph, K any field, and let LK(E) denote the Leavitt path algebra of E with coefficients in K. For each rational infinite path c∞ of E we explicitly construct a projective resolution of the corresponding Chen simple left LK(E)-module V[c∞]. Further, when E is row- finite, for each irrational infinite path p of E we explicitly construct a projective resolution of the corresponding Chen simple left LK(E)-module V[p]. For Chen simple modules S, T we describe Ext1LK (E)(S, T ) by presenting an explicit K-basis. For any graph E containing at least one cycle, this description guarantees the existence of indecomposable left LK(E)-modules of any prescribed finite length.File | Dimensione | Formato | |
---|---|---|---|
leavittpathalgebras.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
Versione dell'editore
Licenza:
Accesso ristretto
Dimensione
557.86 kB
Formato
Adobe PDF
|
557.86 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.