Impaired osteoblast/osteoclast cross-talk and bone structure homeostasis resulting in osteopenia/osteoporosis are often observed in HIV seropositive patients but the causal mechanisms remain unsettled. This study analyzed the biological effects of Tat on peripheral blood monocyte-derived osteoclast differentiation. Tat enhances osteoclast differentiation and activity induced by RANKL plus M-CSF treatment increasing both the mRNA expression of specific osteoclast differentiation markers, such as cathepsin K and calcitonin receptor, and TRAP expression and activity. These Tat-related biological effects may be related, at least in part, to the induction of c-fos expression and AP-1 activity. c-fos up-regulation was triggered by Tat when cell cultures were co-treated with RANKL/M-CSF and an analysis of c-fos promoter with c-fos deletion mutant constructs disclosed specific c-fos promoter domains targeted by Tat. Together, these results show that Tat may be considered a viral factor positively modulating the osteoclastogenesis and then bone resorption activity suggesting a pathogenetic role of this viral protein in the HIV-related osteopenia/osteoporosis. (C) 2010 Elsevier Inc. All rights reserved.

HIV-1 Tat protein enhances RANKL/M-CSF-mediated osteoclast differentiation

GIBELLINI, Davide;
2010-01-01

Abstract

Impaired osteoblast/osteoclast cross-talk and bone structure homeostasis resulting in osteopenia/osteoporosis are often observed in HIV seropositive patients but the causal mechanisms remain unsettled. This study analyzed the biological effects of Tat on peripheral blood monocyte-derived osteoclast differentiation. Tat enhances osteoclast differentiation and activity induced by RANKL plus M-CSF treatment increasing both the mRNA expression of specific osteoclast differentiation markers, such as cathepsin K and calcitonin receptor, and TRAP expression and activity. These Tat-related biological effects may be related, at least in part, to the induction of c-fos expression and AP-1 activity. c-fos up-regulation was triggered by Tat when cell cultures were co-treated with RANKL/M-CSF and an analysis of c-fos promoter with c-fos deletion mutant constructs disclosed specific c-fos promoter domains targeted by Tat. Together, these results show that Tat may be considered a viral factor positively modulating the osteoclastogenesis and then bone resorption activity suggesting a pathogenetic role of this viral protein in the HIV-related osteopenia/osteoporosis. (C) 2010 Elsevier Inc. All rights reserved.
HIV-1; Tat; Osteoclast; c-fos
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/932756
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact