The rare disease Primary Hyperoxaluria Type I (PH1) results from the deficit of liver peroxisomal alanine:glyoxylate aminotransferase (AGT), as a consequence of inherited mutations on the AGXT gene frequently leading to protein misfolding. Pharmacological chaperone (PC) therapy is a newly developed approach for misfolding diseases based on the use of small molecule ligands able to promote the correct folding of a mutant enzyme. In this report, we describe the interaction of amino-oxyacetic acid (AOA) with the recombinant purified form of two polymorphic species of AGT, AGT-Ma and AGT-Mi, and with three pathogenic variants bearing previously identified folding defects: G41R-Ma, G170R-Mi, and I244T-Mi. We found that for all these enzyme AOA (i) forms an oxime at the active site, (ii) behaves as a slow, tight-binding inhibitor with KI values in the nanomolar range, and (iii) increases the thermal stability. Furthermore, experiments performed in mammalian cells revealed that AOA acts as a PC by partly preventing the intracellular aggregation of G41R-Ma and by promoting the correct peroxisomal import of G170R-Mi and I244T-Mi. Based on these data, we carried out a small-scale screening campaign. We identified four AOA analogues acting as AGT inhibitors, even if only one was found to act as a PC. The possible relationship between the structure and the PC activity of these compounds is discussed. Altogether, these results provide the proof-of-principle for the feasibility of a therapy with PCs for PH1-causing variants bearing folding defects and provide the scaffold for the identification of more specific ligands.

The Chaperoning Activity of Amino-oxyacetic Acid on Folding-Defective Variants of Human Alanine:Glyoxylate Aminotransferase Causing Primary Hyperoxaluria Type I

OPPICI, Elisa;MONTIOLI, Riccardo;DINDO, MIRCO;LORENZETTO, Antonio;CELLINI, Barbara
2015-01-01

Abstract

The rare disease Primary Hyperoxaluria Type I (PH1) results from the deficit of liver peroxisomal alanine:glyoxylate aminotransferase (AGT), as a consequence of inherited mutations on the AGXT gene frequently leading to protein misfolding. Pharmacological chaperone (PC) therapy is a newly developed approach for misfolding diseases based on the use of small molecule ligands able to promote the correct folding of a mutant enzyme. In this report, we describe the interaction of amino-oxyacetic acid (AOA) with the recombinant purified form of two polymorphic species of AGT, AGT-Ma and AGT-Mi, and with three pathogenic variants bearing previously identified folding defects: G41R-Ma, G170R-Mi, and I244T-Mi. We found that for all these enzyme AOA (i) forms an oxime at the active site, (ii) behaves as a slow, tight-binding inhibitor with KI values in the nanomolar range, and (iii) increases the thermal stability. Furthermore, experiments performed in mammalian cells revealed that AOA acts as a PC by partly preventing the intracellular aggregation of G41R-Ma and by promoting the correct peroxisomal import of G170R-Mi and I244T-Mi. Based on these data, we carried out a small-scale screening campaign. We identified four AOA analogues acting as AGT inhibitors, even if only one was found to act as a PC. The possible relationship between the structure and the PC activity of these compounds is discussed. Altogether, these results provide the proof-of-principle for the feasibility of a therapy with PCs for PH1-causing variants bearing folding defects and provide the scaffold for the identification of more specific ligands.
2015
alanine glyoxylate aminotransferase, aminooxyacetic acid, chaperone, pharmacological chaperone.
File in questo prodotto:
File Dimensione Formato  
proof.pdf

solo utenti autorizzati

Descrizione: articolo completo
Tipologia: Documento in Post-print
Licenza: Accesso ristretto
Dimensione 2.71 MB
Formato Adobe PDF
2.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/930279
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact