We present an inverse power method for the computation of the first homogeneous eigenpair of the p(x)-Laplacian problem. The operators are discretized by the finite element method. The inner minimization problems are solved by a globally convergent inexact Newton method. Numerical comparisons are made, in one- and two-dimensional domains, with other results present in literature for the constant case p(x)=p and with other minimization techniques (namely, the nonlinear conjugate gradient) for the p(x) variable case.
Titolo: | The Inverse Power Method for the p(x)-Laplacian Problem |
Autori: | |
Data di pubblicazione: | 2015 |
Rivista: | |
Abstract: | We present an inverse power method for the computation of the first homogeneous eigenpair of the p(x)-Laplacian problem. The operators are discretized by the finite element method. The inner minimization problems are solved by a globally convergent inexact Newton method. Numerical comparisons are made, in one- and two-dimensional domains, with other results present in literature for the constant case p(x)=p and with other minimization techniques (namely, the nonlinear conjugate gradient) for the p(x) variable case. |
Handle: | http://hdl.handle.net/11562/929610 |
Appare nelle tipologie: | 01.01 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
preCZ15.pdf | articolo principale | Documento in Post-print | ![]() | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.