We present the Zariski spectrum as an inductively generated basic topology à la Martin-Löf and Sambin. Since we can thus get by without considering powers and radicals, this simplifies the presentation as a formal topology initiated by Sigstam. Our treatment includes closed subspaces and basic opens: that is, arbitrary quotients and singleton localisations. All the effective objects under consideration are introduced by means of inductive definitions. The notions of spatiality and reducibility are characterized for the class of Zariski formal topologies, and their nonconstructive content is pointed out: while spatiality implies classical logic, reducibility corresponds to a fragment of the Axiom of Choice in the form of Russell’s Multiplicative Axiom.
The Basic Zariski Topology
Schuster, Peter Michael;
2015-01-01
Abstract
We present the Zariski spectrum as an inductively generated basic topology à la Martin-Löf and Sambin. Since we can thus get by without considering powers and radicals, this simplifies the presentation as a formal topology initiated by Sigstam. Our treatment includes closed subspaces and basic opens: that is, arbitrary quotients and singleton localisations. All the effective objects under consideration are introduced by means of inductive definitions. The notions of spatiality and reducibility are characterized for the class of Zariski formal topologies, and their nonconstructive content is pointed out: while spatiality implies classical logic, reducibility corresponds to a fragment of the Axiom of Choice in the form of Russell’s Multiplicative Axiom.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.