Let be a 2-factorization of the complete graph Kv admitting an automorphism group G acting doubly transitively on the set of vertices. The vertex-set V(Kv) can then be identified with the point-set of AG(n, p) and each 2-factor of is the union of p-cycles which are obtained from a parallel class of lines of AG(n, p) in a suitable manner, the group G being a subgroup of A G L(n, p) in this case. The proof relies on the classification of 2-(v, k, 1) designs admitting a doubly transitive automorphism group. The same conclusion holds even if G is only assumed to act doubly homogeneously.

Doubly transitive 2-factorizations

Mazzuoccolo, Giuseppe
2007-01-01

Abstract

Let be a 2-factorization of the complete graph Kv admitting an automorphism group G acting doubly transitively on the set of vertices. The vertex-set V(Kv) can then be identified with the point-set of AG(n, p) and each 2-factor of is the union of p-cycles which are obtained from a parallel class of lines of AG(n, p) in a suitable manner, the group G being a subgroup of A G L(n, p) in this case. The proof relies on the classification of 2-(v, k, 1) designs admitting a doubly transitive automorphism group. The same conclusion holds even if G is only assumed to act doubly homogeneously.
2007
graph; 2-factorization; doubly transitive permutation group; design
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/927956
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact