Noether classes of posets arise in a natural way from the constructively meaningful variants of the notion of a Noetherian ring. Using an axiomatic characterisation of a Noether class, we prove that if a poset belongs to a Noether class, then so does the poset of the finite descending chains. When applied to the poset of finitely generated ideals of a ring, this helps towards a unified constructive proof of the Hilbert basis theorem for all Noether classes.
Noetherian orders
Schuster, Peter Michael
2011-01-01
Abstract
Noether classes of posets arise in a natural way from the constructively meaningful variants of the notion of a Noetherian ring. Using an axiomatic characterisation of a Noether class, we prove that if a poset belongs to a Noether class, then so does the poset of the finite descending chains. When applied to the poset of finitely generated ideals of a ring, this helps towards a unified constructive proof of the Hilbert basis theorem for all Noether classes.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.