We extract a quantitative variant of uniqueness from the usual hypotheses of the implicit function theorem. Not only does this lead to an a priori proof of continuity, but also to an alternative, full proof of the implicit function theorem. Additionally, we investigate implicit functions as a case of the unique existence paradigm with parameters.
Titolo: | Uniqueness, continuity, and existence of implicit functions in constructive analysis |
Autori: | |
Data di pubblicazione: | 2011 |
Rivista: | |
Abstract: | We extract a quantitative variant of uniqueness from the usual hypotheses of the implicit function theorem. Not only does this lead to an a priori proof of continuity, but also to an alternative, full proof of the implicit function theorem. Additionally, we investigate implicit functions as a case of the unique existence paradigm with parameters. |
Handle: | http://hdl.handle.net/11562/927870 |
Appare nelle tipologie: | 01.01 Articolo in Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.